Clinical utility gene card for: Marfan syndrome type 1 and related phenotypes [FBN1]
Mine Arslan-Kirchner, Eloisa Arbustini, Catherine Boileau, Anne Child, Gwenaelle Collod-Beroud, Anne De Paepe, Jörg Epplen, Guillaume Jondeau, Bart Loeys, Laurence Faivre

To cite this version:
Mine Arslan-Kirchner, Eloisa Arbustini, Catherine Boileau, Anne Child, Gwenaelle Collod-Beroud, et al.. Clinical utility gene card for: Marfan syndrome type 1 and related phenotypes [FBN1]. European Journal of Human Genetics, Nature Publishing Group, 2010, 18 (9), <10.1038/ejhg.2010.42>. <hal-01669997>

HAL Id: hal-01669997
https://hal.archives-ouvertes.fr/hal-01669997
Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Clinical utility gene card for: Marfan syndrome type 1 and related phenotypes \textbf{[FBN1]}

Mine Arslan-Kirchner*,1, Eloisa Arbustini2, Catherine Boileau3, Anne Child4, Gwenaëlle Collod-Beroud5, Anne De Paepe6, Jörg Epplen7, Guillaume Jondeau8, Bart Loeys6 and Laurence Faivre9

1. DISEASE CHARACTERISTICS

1.1 Name of the disease (synonyms)
Marfan syndrome type 1 and related phenotypes.

1.2 OMIM# of the disease
154700.

1.3 Name of the analysed genes or DNA/chromosome segments
FBN1.

1.4 OMIM# of the gene(s)
134797.

1.5 Mutational spectrum
Over 1700 different disease-causing mutations have been described (UMD database; Collod-Beroud et al; Collod-Beroud G, personal communication).

All types of mutations have been reported. From a study of 1013 probands with a pathogenic \textit{FBN1} mutation, the distribution was as follows: 56% missense mutations; 17% frameshift mutations; 14% nonsense mutations; 11% splice mutations; 2% in-frame deletions.

1.6 Analytical methods
Two different strategies for \textit{FBN1} mutation screening procedures are currently applied:

(1) direct sequencing of genomic exonic DNA with flanking intronic sequences;
(2) or DHPLC or high-resolution melting with confirmation by direct sequencing

When no mutation is identified, a search for \textit{FBN1} genomic rearrangements by MLPA or related techniques could be proposed in clinically convincing cases. Indeed, this search seems to increase the \textit{FBN1} mutation uptake number by a significant percentage. From a study of 101 patients with Marfan syndrome or related phenotypes but with an absence of \textit{FBN1} mutation after direct sequencing, two \textit{FBN1} genomic deletions (2%) were found using MLPA. Similarly, Liu et al identified two \textit{FBN1} genomic deletions using RT-PCR out of a series of 60 patients (3.3%), 55 of whom met diagnostic criteria for MFS.

SSCP analysis does not seem to be a satisfying technique for \textit{FBN1} mutation screening, as it has been shown that it was less efficient than direct sequencing. Indeed, Loeys et al detected 73 sequence variants in 95 patients after screening by SSCP. They identified 13 additional mutations by performing direct sequencing in patients with normal SSCP.

1.7 Analytical validation
Sequencing of both strands was carried out. When a mutation is identified, validation of the results using a second primer set is recommended, +/- using a second technique (PCR with restriction enzyme digestion, high-resolution melting or DHPLC) when possible.

1.8 The estimated frequency of the disease (incidence at birth (’birth prevalence’) or population prevalence)
There was a population prevalence of approximately 3 out of 10 000.

1.9 If applicable, prevalence in the ethnic group of the investigated person
Not applicable.

1.10 Diagnostic setting

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (Differential) diagnostics</td>
<td>☒</td>
</tr>
<tr>
<td>B. Predictive testing</td>
<td>☒</td>
</tr>
<tr>
<td>C. Risk assessment in relatives</td>
<td>☒</td>
</tr>
<tr>
<td>D. Prenatal</td>
<td>☒</td>
</tr>
</tbody>
</table>

Comment: \textit{FBN1} mutation screening does not seem to be useful for the positive diagnosis of Marfan syndrome in patients fulfilling international Ghent criteria. However, it seems useful in the following situations,

*Correspondence: Dr M Arslan-Kirchner, Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany. Tel: +49 511 532 6532; Fax: +49 511 532 8533; E-mail: arslan.mine@mh-hannover.de
to determine whether follow-up and preventive treatment for aortic dilatation is indicated.\(^9,10\)

1. patients not fulfilling international Ghent criteria, in particular patients with isolated ectopia lentis and patients with suggestive cardiovascular features combined with skeletal findings, or in sporadic cases of young age\(^11\)

2. predictive testing in young children (offspring of an affected parent) or relatives (large clinical heterogeneity)\(^12\)

The decision with regard to searching for an \(FBN1\) gene mutation in such cases will vary and depend on specific family and individual circumstances. The indications of genotyping could be extended to all cases/families in which the proven genetic diagnosis could influence the lifestyle (athletes), the initiation of treatment, or the rate of clinical controls/monitoring.

\(FBN1\) mutation screening can also be indicated in an affected patient with reproductive issues. A prenatal test for Marfan syndrome is rarely requested, but it is expected that the greater availability of mutation testing of the \(FBN1\) gene will increase requests for prenatal diagnosis. Prenatal diagnosis is technically possible by analysis of DNA extracted from foetal cells obtained by chorionic villus sampling at about 10–12 weeks of gestation.\(^13\) Prenatal diagnosis is possible when the disease-causing mutation has been identified in the family with careful exclusion of maternal DNA contamination when the mother is the affected parent. In a few cases, when a family can be sampled at large and the disease-causing mutation has not been identified, linkage analysis can be performed. Prenatal diagnosis can be then offered only if conclusive linkage has been obtained and an unambiguous disease-associated haplotype has been identified.

A careful analysis of intra- and extragenic \(FBN1\) markers is required.

Prenatal diagnosis can be discussed case by case, with couples requesting it in the framework of a genetic clinic, especially in families with severe cardiac manifestations. Practical use of prenatal diagnosis remains difficult because of the extremely broad variability of clinical expression, even within families, and our inability, at present, to predict the severity of the disease in a given individual. However, it is unlikely that a neonatal MFS will occur in newborns of an adult affected parent. Neonatal MFS cases are always caused by de novo \(FBN1\) mutations.

Alternatively, preimplantation genetic diagnosis (PGD) can be offered for families in which the disease-causing mutation has been identified in an affected family member. However, rules, laws and regulations vary in different European countries, and PGD is illegal in some countries.

2. TEST CHARACTERISTICS

<table>
<thead>
<tr>
<th>Genotype or disease</th>
<th>A: True positives</th>
<th>C: False negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>B: False positives</td>
<td>D: True negative</td>
</tr>
<tr>
<td>Positive A</td>
<td>B</td>
<td>A/(A+C)</td>
</tr>
<tr>
<td>Negative C</td>
<td>D</td>
<td>D/(D+B)</td>
</tr>
</tbody>
</table>

2.1 Analytical sensitivity

(proportion of positive tests if the genotype is present)

The proportion is practically 100%.

The possibility of preferential amplification of one allele if primers are localized on an SNP or because of deletion exists, although these events are exceptional.

Classical criteria for determining the pathogenicity of an \(FBN1\) mutation are the following:

1. Nonsense mutation
2. Splice-site mutations affecting canonical splice sequence or shown to alter splicing at mRNA/cDNA level
3. Out-of-frame and in-frame deletion or insertion
4. De novo missense mutation (with proven paternity and absence of disease in parents)
5. Missense mutation previously shown to segregate in a Marfan family
6. Missense replacing/creating cysteine (42% of missense mutations)
7. Missense mutation affecting cbEGF consensus sequence (22% of missense mutations)
8. Missense mutation involving a highly conserved amino acid (6% of missense mutations)

For other missense mutations, the search for segregation in the family should be performed if possible, as well as in the absence of the variant in 400 ethnically matched control chromosomes.

2.2 Analytical specificity

(proportion of negative tests if the genotype is not present)

The proportion was practically 100%.

2.3 Clinical sensitivity

(proportion of positive tests if the disease is present)

Clinical sensitivity can be dependent on variable factors such as age or family history. In such cases, a general statement should be given, even if a quantification can only be made case by case.

A few studies have addressed the question of clinical sensitivity for \(FBN1\) mutation recognition. Results are variable depending on the method used for mutation screening, but also depending on the set of clinical criteria required for molecular diagnosis. Indeed, a high variable expressivity has been reported in \(FBN1\) mutations and the clinical sensibility is higher when patients fulfilled the Ghent criteria. Results of the more recent studies, including a reasonable number of patients, are as follows:

1. Identification of \(FBN1\) mutations in 86 out of 93 individuals presenting with classic Marfan syndrome, all fulfilling the Ghent criteria (93%), using SSCP and direct sequencing in negative cases\(^6\)
2. Identification of \(FBN1\) mutations in 74 out of 81 individuals presenting with MFS or Marfan-like phenotypes (91.35%), using DHPLC\(^14\)
3. Identification of \(FBN1\) mutations in 69 out of 105 individuals with suspected MFS, all fulfilling the Ghent criteria (76%), using direct sequencing\(^15\)
4. Identification of \(FBN1\) mutations in 90 out of 110 individuals fulfilling the Ghent criteria (82%), in 84 out of 315 individuals with incomplete MFS (27%), in 19 out of 38 individuals with EL (50%) and in none of the 45 individuals with isolated ascending aortic aneurysm using SSCP or DHPLC. The mutation rate was higher with DHPLC. For example, in individuals with classical MFS, the mutation detection rate was 91% using DHPLC vs 75% using SSCP\(^16\)
5. Identification of \(FBN1\) mutations in 80 out of 85 individuals fulfilling the Ghent criteria (88%) and in 36% of patients with other fibrillinopathies type I using DHPLC\(^17\)
(6) Identification of FBN1 mutations in 193 out of 266 individuals fulfilling the Ghent criteria (72.5%), in 61 out of 105 with incomplete Ghent criteria (58%) and in 3 out of 21 (14.3%) patients referred as possible MFS but with no major diagnostic criterion in any organ system.18

Some explanations can be given accounting for the imperfect clinical sensitivity for FBN1 mutation screening in MFS:

(1) Genetic heterogeneity: mutations within the TGFBR1 and TGFBR2 genes have been reported in patients with MFS or suspected MFS. Sakai et al found one patient with a TGFBR1 mutation out of a series of 49 patients (2%) and two TGFBR2 mutations (4%). Mátyás et al reported 10 TGFBR1 or TGFBR2 mutations in 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in FBN1; Singh et al. found two TGFBR1 and five TGFBR2 mutations in 41 unrelated patients fulfilling or not fulfilling the diagnostic criteria of Ghent nosology, in whom mutations in the FBN1 coding region were not identified; Stheneur et al. found six mutations in the TGFBR2 gene and one in the TGFBR1 gene in 105 MFS patients and nine mutations in the TGFBR2 gene and two mutations in the TGFBR1 gene in 247 patients with incomplete or probable MFS who were negative for an FBN1 gene mutation. Screening for TGFBR1/2 should be indicated in the first step when one of the following clinical or imaging features is encountered: hypertelorism, bifid uvula, cleft palate, craniosynostosis, clinical features of vascular Ehlers–Danlos syndrome, arterial tortuosity and aneurysms.

(2) Incomplete detection of mutations with the method used: mutations in the 5’ upstream regions or intronic mutations.

2.4 Clinical specificity
(proportion of negative tests if the disease is not present)
Clinical specificity can be dependent on variable factors such as age or family history. In such cases, a general statement should be given, even if quantification can only be made by case.
The proportion is probably 100%, but no data were available for this measure.

2.5 Positive clinical predictive value
(lifetime risk of developing the disease if the test is positive)
The possibility is nearly 100%.
Exceptional cases of incomplete penetrance have been reported. It is noteworthy that a large number of MFS manifestations are age dependent. A child with an FBN1 mutation can be identified as at-risk but only presents MFS features at a later age.
Although all patients with an FBN1 pathogenic mutation will present a clinical feature at some time during life, it is possible that some patients will not fulfill international criteria for MFS throughout life.

2.6 Negative clinical predictive value
(probability not to develop the disease if the test is negative)
Assume an increased risk based on family history for a nonaffected person. Allelic and locus heterogeneity may need to be considered.
When the index case in that family had been tested, the proportion was found to be nearly 100%
When the index case in that family had not been tested, it was concluded that predictive testing for family members should only be proposed when a pathogenic mutation has been identified in an index case.

3. CLINICAL UTILITY
3.1 (Differential) diagnosis: the tested person is clinically affected
(To be answered if in 1.10, ‘A’ was marked).

3.1.1 Can a diagnosis be made other than through a genetic test?

<table>
<thead>
<tr>
<th>No</th>
<th>☐ (Continue with 3.1.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☒ Clinically ☒ Imaging</td>
</tr>
<tr>
<td></td>
<td>☐ Endoscopy ☐ Biochemistry</td>
</tr>
<tr>
<td></td>
<td>☐ Electrophysiology</td>
</tr>
<tr>
<td></td>
<td>Other (please describe) family history (Ghent criteria)</td>
</tr>
</tbody>
</table>

3.1.2 Describe the burden of alternative diagnostic methods to the patient.
Cardiological (including echocardiography), orthopaedic (including X-rays) and ophthalmological investigations can altogether establish a diagnosis (but not always).
MRI to diagnose or exclude dural ectasia is occasionally necessary to establish the diagnosis, in patients not fulfilling the international criteria with the previously cited investigations. Dural ectasia is present in many other connective tissue disorders, such as Ehlers Danlos or Loes–Dietz syndrome, hence this will not, on its own, allow the establishment of a diagnosis.

3.1.3 How is the cost effectiveness of alternative diagnostic methods to be judged?
Unknown.

3.1.4 Will disease management be influenced by the result of a genetic test?

<table>
<thead>
<tr>
<th>No</th>
<th>☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☒</td>
</tr>
</tbody>
</table>

Therapy (please describe)
Indication of drug therapy or replacement of dilated aortic segments is similar in patients diagnosed with Marfan syndrome with or without identification of the molecular FBN1 defect.27 Indeed, as the mutation detection rate is not 100% and the availability of FBN1 screening is different from country to country, appropriate treatment should be prescribed for all patients with a clinical diagnosis of MFS. As the presence of a mutation in the FBN1 gene is a major criterion of the international nosology, the genetic result may lead to diagnosis of Marfan syndrome that could have consequences in terms of regular cardiological follow-up, and prescription of drug therapy for preventing or limiting aortic dilatation.

Prognosis (please describe)
Similarly, the identification of a FBN1 mutation in an MFS patient will not lead to a different prognosis when compared with patients with MFS but in whom a mutation has not been sought or identified. Nevertheless, there is evidence that patients with TGFBR1/2 mutation need more extensive imaging of the aorta, and in some series, have increased risk for dissection at smaller aortic diameters. Therefore, identification of either an FBN1 compared with a TGFBR1/2 mutation could influence prognosis, management and therapy.
The results of genetic tests will influence genetic counselling by permitting predictive testing of children or paucisymptomatic family members and determining accurate recurrence risk. Rare cases of somatic or germline mosaicism have been reported. The identification of a FBN1 mutation might also be helpful in patients not fulfilling the clinical Ghent criteria and without aortic manifestations to reduce the risk of loss to follow-up. All cases should be integrated in a multidisciplinary clinic. Preventive medical treatment for aortic dilatation are recommended in patients with the clinical diagnosis of MFS and patients with an FBN1 mutation, even in the absence of aortic manifestations, but attitudes could vary between countries through Europe. Indeed, some teams propose to install medical therapy only when regular echocardiograms do demonstrate some definite progressive involvement, arguing that some families with ocular and skeletal manifestations only do not demonstrate cardiac involvement.

CONFLICT OF INTEREST

The authors declare no conflict of interest

ACKNOWLEDGEMENTS

This work was supported by EuroGentest, an EU-FP6-supported NoE, contract number 512148 (EuroGentest Unit 3: ‘Clinical genetics, community genetics and public health’, Workpackage 3.2).