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Abstract

First order asymptotic homogenization allows to determine the effective behaviour of a porous medium
by starting from the pore scale description, when there is a large separation between the pore scale and the
macroscopic scale. When the scale ratio is âĂIJsmall but not too small,âĂİ additional terms need to be taken
into account, which can be obtained by exploiting higher order equations in the asymptotic homogenization
procedure. The aim of the present study is to derive second order models to describe solute transport in
a macroscopically homogeneous porous medium at low scale separation. The three following macroscopic
transport regimes are successively considered: pure diffusion with fluid at rest, predominant diffusion with
fluid in motion and advection-diffusion. The results show that while the transport regime remains of diffusive
type when the fluid is at rest, low scale separation induces modification of apparent transport regime when
fluid is in motion. Indeed, predominant diffusion and advection-diffusion lead to the apparent regimes of
advection-diffusion and of dispersion, respectively.

I. Introduction

Most studies in the theory of flow and trans-
port in porous media are based on the exploita-
tion of the continuum theory, which requires
that the condition of separation of scales be
fulfilled. First order asymptotic homogeniza-
tion can be used to derive such continuum
models. When the scale ratio is “small but
not too small“, the additional terms which are
required to account for micro-structural scale
effects can be obtained by considering higher
order correctors in the asymptotic homogeniza-
tion procedure. The present paper is aimed at
analysing the influence of low scale separation
on solute transport in macroscopically homo-
geneous rigid porous media. The objective is
to derive second order homogenized models
for the three following macroscopic transport

∗

regimes: pure diffusion with the fluid at rest,
predominant diffusion with the fluid in mo-
tion and advection-diffusion. The results show
that low scale separation induces modification
of apparent transport regime when fluid is in
motion. The paper is organised as follows.
Section II presents a brief description of the
homogenization methodology. Second order
homogenization of pure diffusion is detailed in
Section III, and second order homogenization
of convection-diffusion in the regimes of pre-
dominant diffusion and of advection diffusion
is the purpose of Section IV. Finally, Section
V presents a summary of the main theoretical
results contained in this work and highlights
conclusive remarks.
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II. Homogenization method

i. Medium under consideration

We consider a periodic porous medium, of
macroscopic characteristic size L, and made
of a solid matrix and of a fluid-saturated pore
space. We further denote the periodic cell by
Ω, its characteristic length by l, and we for-
mulate the condition of separation of scales
by ε = l/L � 1. Within the periodic cell, we
denote by Ωp the fluid-saturated pore domain,
by Ωs the solid matrix, and by Γ their common
interface, as depicted in Fig. 1. Using the two
characteristic lengths, l and L, and the physical
space variable, ~X, we define two dimensionless
space variables: ~y = ~X/l, ~x = ~X/L, and ~y and
~x describe variations on the microscopic and
the macroscopic scales, respectively. Invoking
the differentiation rule of multiple variables,
the gradient operator with respect to ~X is writ-
ten as

~∇X =
1
l
~∇y +

1
L
~∇x. (1)

ii. Nondimensionalisation of pore
scale description

The methodology firstly consists in writing the
dimensionless pore scale description, which
is the set of dimensionless equations that de-
scribe the phenomena being considered within
the periodic unit cell. Each quantity in a di-
mensionless equation is the ratio of its physical
counterpart to its characteristic value (indexed
by c). This writing gives rise to dimension-
less numbers, which are defined by means of
characteristic values. These dimensionless pa-
rameters are then estimated with respect to
powers of the small parameter ε. A parameter
P is said to be of order εp, P = O(εp), when

εp+1 � P� εp−1. (2)

The dimensionless writing of the equations re-
quires the choice of a characteristic length for
the dimensionless writing of space derivatives.
We arbitrarily choose L as the reference char-
acteristic length. The dimensionless gradient

operator is thus L~∇X , which by Eq. (1) is given
by

~∇ = L~∇X = ε−1~∇y + ~∇x. (3)

iii. Homogenisation procedure

The homogenization method being used is an
asymptotic approach. It is therefore based
upon the fundamental assumption that the un-
known fields can be written in the form of
asymptotic expansions in powers of ε

ψ = ψ0 (~y,~x)+ εψ1 (~y,~x)+ ε2ψ2 (~y,~x)+ ... (4)

in which functions ψi are Ω-periodic in vari-
able ~y. The method consists in incorporating
the asymptotic expansions in the dimension-
less local description, while replacing the di-
mensionless numbers by their orders of mag-
nitude in power of ε and taking into account
the expression of the dimensionless gradient
operator Eq. (3). This leads to approximated
governing equations and boundary conditions
at the successive orders, which together with
the condition of periodicity define well posed
boundary value problems within the periodic
unit cell, from which functions ψi can be deter-
mined. Existence of solutions requires that vol-
ume averaged equations be satisfied. These lat-
ter actually describe the macroscopic behaviour
at successive orders.

III. Second order homogenization

of pure diffusion

Considering the fluid-saturated medium de-
picted in Fig. 1, let us assume that the fluid
phase which contains a low concentration of
solute, is at rest, so that the solute is only trans-
ported by diffusion.

i. Pore scale dimensionless descrip-
tion

The transport of solute by diffusion in the pore
domain is described by conservation of mass
within Ωp and the no-flux boundary condition
over Γ. When cast in dimensionless form, these
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Figure 1: Porous medium : (a) Macroscopic sample ; (b) Periodic unit cell.

equations read N
∂c
∂t
− ~∇ · (D0~∇c) = 0 within Ωp,(5)

(D~∇c) ·~n = 0 over Γ, (6)

where c denotes the solute concentration (mass
of solute per unit volume of fluid), t is time, D0
denotes the coefficient of molecular diffusion
and ~n represents the unit vector giving the
normal to Γ exterior to Ωp. Parameter N is a
dimensionless number, which is defined by

N =
L2

D0c tc

=
tdiff

tc

, tdiff =
L2

D0c

, (7)

where tc is the characteristic time of observa-
tion and tdiff is the characteristic time of diffu-
sion. We take tc = tdiff, i.e.

N = O(ε0), (8)

which fixes the time of observation so as to get
a transient regime on the macroscopic scale.

ii. Second order homogenization

We consider Eq.(5) with estimate Eq. (8), and
boundary condition Eq. (6), and we look for
solutions in the form of Eq. (4) for c. Incorpo-
rating the asymptotic expansion of c and the
expression of the dimensionless gradient opera-
tor Eq. (3) into Eqs.(5)-(6), and then identifying
terms of same power of ε, leads to boundary
value problems in terms of functions ci at the
successive orders.

Boundary value problem for c0

Considering Eq. (5) at O(ε−2) and Eq. (6) at
O(ε−1), we get the first order boundary value
problem

∂

∂yi

(
D0

∂c0

∂yi

)
= 0 within Ωp, (9)

D0
∂c0

∂yi
ni = 0 over Γ, (10)

c0 : periodic in ~y, (11)

from which it is clear that the concentration c0

is constant over the period

c0 = c0(~x, t). (12)

Boundary value problem for c1

At the second order, we obtain the following
boundary value problem for c1:

∂

∂yi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)

]
= 0 within Ωp,(13)[

D0(
∂c1

∂yi
+

∂c0

∂xi
)

]
ni = 0 over Γ, (14)

c0 : periodic in ~y. (15)

By virtue of linearity, the solution reads

c1 = χj(~y)
∂c0

∂xj
+ c̄1(~x, t), (16)

where c̄1(~x, t) is an arbitrary function. Note
that, to render the solution unique, we impose
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that ~χ is average to zero < ~χ >= ~0 (e.g. Ben-
soussan et al. (1978), Sanchez-Palencia (1980)),
where the volume mean over Ωp is defined by

< · >=
1
| Ω |

∫
Ωp
· dΩ. (17)

Note further that, since we are considering
a macroscopically homogeneous medium, ~χ
doesn’t depend on variable ~x: ~χ = ~χ(~y).

First order macroscopic description

Let consider the boundary value problem Eqs.
(5)-(6) at the third order:

∂c0

∂t
− ∂

∂yi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
−

∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)

]
= 0 within Ωp, (18)[

D0(
∂c2

∂yi
+

∂c1

∂xi
)

]
ni = 0 over Γ. (19)

The homogenization procedure consists now
in integrating Eq. (18) over Ωp. This leads to
the so called compatibility condition, which
is a necessary and sufficient condition for the
existence of solutions, and further represents
the first order macroscopic description. Inte-
grating equation Eq. (18) and invoking Gauss’
theorem, while taking boundary condition Eq.
(19) into account, together with the condition
of periodicity, yields

φ
∂c0

∂t
− ∂

∂xi

(
< D0(

∂c1

∂yi
+

∂c0

∂xi
>

)
= 0. (20)

Now, using Eq. (16), we can write:

∂c1

∂yi
+

∂c0

∂xi
= γ0

ij
∂c0

∂xj
, γ0

ij =
∂χj

∂yi
+ Iij. (21)

Eq. (20) can thus be rewritten as follows

φ
∂c0

∂t
− ∂

∂xi
(Dij

∂c0

∂xj
) = 0, (22)

where

Dij =
1
| Ω |

∫
Ωp

D0 γ0
ij dΩ (23)

is the tensor of effective diffusion. Eq. (22) may
be expressed as

φ
∂ < c >

∂t
− ∂

∂xi
(Dij

∂ < c >
∂xj

)

= O(εφ
∂ < c >

∂t
). (24)

In the above writing < c > represents the first
order average concentration, where the first
order average of any field ψ is defined by

< ψ >=< ψ0 > +O(ε < ψ >). (25)

The above equation represents the first order
macroscopic description for pure diffusion.

Boundary value problem for c2

The third order boundary value problem Eqs.
(18)-(19) can be transformed so as to obtain the
following well-posed problem for c2

∂

∂yi

[
D0(

∂c2

∂yi
+ χj

∂2c0

∂xi∂xj
+

∂c̄1

∂xi
)

]
=

(
1
φ

Dij − D0γ0
ij)

∂2c0

∂xi∂xj
within Ωp,(26)[

D0(
∂c2

∂yi
+ χj

∂2c0

∂xi∂xj
+

∂c̄1

∂xi
)

]
ni

= 0 over Γ, (27)

whose solution reads

c2 = ηjk(~y)
∂2c0

∂xj∂xk
+ χj(~y)

∂c̄1

∂xj
+ c̄2(~x, t), (28)

where c̄2(~x, t) is an arbitrary function and
where < ηjk >= 0.

Derivation of the second order corrector

The fourth order of Eqs. (5)-(6) yields:

∂c1

∂t
− ∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)

]
−

∂

∂xi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)

]
= 0 within Ωp,(29)[

D0(
∂c3

∂yi
+

∂c2

∂xi
)

]
ni = 0 over Γ. (30)
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The second order corrector of the macroscopic
description is obtained by integrating Eq. (29)
over Ωp. This leads to

φ
∂c̄1

∂t
− ∂

∂xi
(Eijk

∂2c0

∂xj∂xk
+ Dij

∂c̄1

∂xj
) = 0, (31)

where

Eijk =< D0(
∂ηjk

∂yi
+ χi Ijk) > . (32)

The third order tensor Eijk is symmetric
with respect to its last two indices and anti-
symmetric with respect to its first two indices,
and, as a result of this anti-symmetry property,
the second order gradient term of Eq. (31) van-
ishes (Cf. A). Thus, the second order corrector
finally reads:

φ
∂c̄1

∂t
− ∂

∂xi
(Dij

∂c̄1

∂xj
) = 0. (33)

Second order macroscopic description

Let add Eq. (22) to Eq. (33) multiplied by ε. We
get 

φ
∂ < c >

∂t
− ∂

∂xi

[
Dij

∂ < c >
∂xj

]

= O(ε2φ
∂ < c >

∂t
). (34)

In the above writing, < c > represents the
second order mean concentration, where, the
second order mean of any fied ψ is defined by

< ψ >=< ψ0 > +ε < ψ1 > +O(ε2 < ψ >).
(35)

Therefore, the second order macroscopic de-
scription of pure diffusion is identical to the
first order model, but with a precision O(ε2).

IV. Second order homogenization

of convection diffusion

i. Pore scale dimensionless descrip-
tion

When the fluid is in motion, the solute is trans-
ported by diffusion and convection. Then, the

dimensionless transport equations on the pore
scale read

N
∂c
∂t
− ~∇ · (D0~∇c−Pe c~v) = 0 in Ωp,(36)

~v =~0 over Γ, (37)

(D0~∇c) ·~n = 0 over Γ, (38)

where Pe = vcL/Dc denotes the Péclet num-
ber. Considering the slow flow of a Newtonian
incompressible fluid, its motion is described by
Stokes equations{

F µ∆~v− ~∇p =~0 within Ωp, (39)
~∇ ·~v = 0 within Ωp, (40)

where F = µcvc/Lpc = O(ε2) (e.g. Auriault
et al. (2005)). Homogenization of the above
equations leads to the following macroscopic
transport regime accordingly to the order of
magnitude of Pe Auriault and Adler (1995):

diffusion when Pe ≤ O(ε)
advection-diffusion when Pe = O(ε0)

advection-dispersion when Pe = O(ε−1)

Whilst the first two models are first order mod-
els, the dispersive model requires to account
for the second order corrector. Our purpose
here is to derive the second order models for
Pe = O(ε) and Pe = O(ε0).

ii. Second order homogenization of
fluid flow

Homogenization of the fluid flow equations
has been performed up to the third order in
Auriault et al. (2005). For a macroscopically
homogeneous medium, the results at the first
two orders can be summarised as follows

∂

∂xi
(< vn

i >) = 0, (n = 1, 2) (41)

< v0
i >= −

Kij

µ

∂ < p0 >

∂xj

< v1
i >= −

Nijk

µ

∂2 < p0 >

∂xj∂xk
−

Kij

µ

∂ < p1 >

∂xj

5



iii. Second order homogenization of
convection diffusion at Pe = O(ε)
First order macroscopic description

We consider Pe = O(ε) and N = O(ε0) in Eq.
(36). At the first two orders, we get the same
boundary value problems as those obtained in
Section III, and which lead to Eq. (12) and Eq.
(16), for c0 and c1, respectively. At the third
order, Eq. (36) yields

∂c0

∂t
− ∂

∂yi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0~v0

]
− ∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)

]
= 0. (42)

Considering Eq. (40) at the first order

~∇y ·~v0 = 0, (43)

and Eq. (12), Eq. (42) reduces to Eq. (18).
Therefore, its integration leads to Eq. (22) and
the first order macroscopic description is the
model of diffusion given by Eq. (24). Further-
more, c2 is given by Eq. (28).

Second order macroscopic description

Eq. (36) at the fourth order gives
∂c1

∂t
− ∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)− c0~v1 − c1~v0

]
− ∂

∂xi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0~v0

]
= 0, (44)

and its integration over the period yields

φ
∂c̄1

∂t
− ∂

∂xi
(Dij

∂c̄1

∂xj
)+ < v0

i >
∂c0

∂xi
= 0. (45)

By adding Eq. (22) to Eq. (45) multiplied by ε,
we get

φ
∂ < c >

∂t
− ∂

∂xi

[
Dij

∂ < c >
∂xj

]

+ε < vi >
∂ < c >

∂xi
= O(ε2φ

∂ < c >
∂t

),(46)

where < c > is the second order average con-
centration, while < vi > is the first order fluid

average velocity and verifies
< vi >= −

Kij

µ

∂ < p >

∂xj
+O(ε < vi >),(47)

∂ < vi >

∂xi
= O(ε ∂ < vi >

∂xi
). (48)

The second order model is therefore the model
of advection diffusion, with a precision O(ε2)
and in which the velocity is the first order ve-
locity and verifies Darcy’s law.

iv. Second order homogenization of
convection diffusion at Pe = O(ε0)

First order macroscopic description

We now consider Eq. (36) with Pe = O(ε0)
and N = O(ε0). The first order boundary
value problem is identical to Eqs. (9)-(10), and
by Eq. (43), Eqs. (36)-(38) at the second order
reduce to Eqs. (13)-(14). Consequently, c0 and
c1 verify Eq. (12) and Eq. (16), respectively. At
the third order, Eq. (36) reads

∂c0

∂t
− ∂

∂yi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0v1

i − c1v0
i

]
− ∂

∂xi

[
D0(

∂c1

∂yi
+

∂c0

∂xi
)− c0v0

i

]
= 0, (49)

and the associated boundary conditions are
Eq. (19) and: v0

i = v1
i = 0 over Γ. Let us

now integrate Eq. (49), so as to obtain the
first order homogenized description. Applying
the divergence theorem and then using the
boundary conditions and the periodicity, we
end up with

φ
∂c0

∂t
− ∂

∂xi
(Dij

∂c0

∂xj
)+ < v0

i >
∂c0

∂xi
= 0. (50)

Therefore, the first order macroscopic descrip-
tion is the model of advection-diffusion and
reads

φ
∂ < c >

∂t
− ∂

∂xi

[
Dij

∂ < c >
∂xj

]

+ < vi >
∂ < c >

∂xi
= O(εφ

∂ < c >
∂t

),(51)

in which < c > is the first order mean concen-
tration.
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Second order macroscopic description

The third order equation Eq. (49), can be trans-
formed to obtain a formulation for determining
c2 (Cf. Appendix B):

∂

∂yi

[
D0(

∂c2

∂yi
+ χj

∂2c0

∂xi∂xj
+

∂c̄1

∂xi
)

]
=

(
1
φ

Dij − D0γ0
ij)

∂2c0

∂xi∂xj
(52)

+(v0
i γ0

ij −
1
φ
< v0

j >)
∂c0

∂xj
.

The above equation with the associated bound-
ary condition, given by Eq. (27), constitute
a well-posed boundary value problem for c2,
whose solution reads

c2 = ηjk(~y)
∂2c0

∂xj∂xk
+ πj(~y)

∂c0

∂xj

+χj(~y)
∂c̄1

∂xj
+ c̄2(~x, t), (53)

where c̄2(~x, t) is an arbitrary function and
where < ηjk >= 0, < πj >= 0. Note that
by definition, vector ~π depends on the fluid
velocity. At the fourth order, equation Eq. (36)
yields

∂c1

∂t
− ∂

∂yi

[
D0(

∂c3

∂yi
+

∂c2

∂xi
)

]
+

∂

∂yi

[
c0v2

i − c1v1
i − c2v0

i

]
(54)

− ∂

∂xi

[
D0(

∂c2

∂yi
+

∂c1

∂xi
)− c0v1

i − c1v0
i

]
= 0,

and the associated boundary conditions are Eq.
(30) and: v0

i = v1
i = v2

i = 0 over Γ. The second-
order corrector of the macroscopic description
is obtained by integrating Eq. (54) over Ωp.
This leads to

φ
∂c̄1

∂t
− ∂

∂xi
(D′ij

∂c0

∂xj
+ Dij

∂c̄1

∂xj
)

+ < v1
i >

∂c0

∂xi
+ < v0

i >
∂c̄1

∂xi
= 0, (55)

where

D′ij =< D0
∂πj

∂yi
− v0

i χj > . (56)

From its definition Eq. (56), we see that the
second order tensor D′ij contains a convective
term: it is therefore a dispersion tensor. Let us
add Eq. (22), to Eq. (55) multiplied by ε. We
get:

φ
∂ < c >

∂t
− ∂

∂xi

[
(Dij + εD′ij)

∂ < c >
∂xj

]

+ < vi >
∂ < c >

∂xi
= O(ε2φ

∂ < c >
∂t

).(57)

In the above equation, < vi > is the second
order fluid velocity, given by

< vi >= −
Nijk

µ

∂2 < p >

∂Xj∂k
−

Kij

µ

∂ < p >

∂Xj

+O(ε2 < vi >), (58)
∂ < vi >

∂Xi
= O(ε2 ∂ < vi >

∂Xi
). (59)

Therefore, the second order macroscopic trans-
port description is a model of advection-
dispersion, in which the fluid velocity verifies
a second order law Eq.(58).

V. Conclusion

In the present paper, second order asymptotic
homogenization is performed for three regimes
of solute transport in macroscopically homoge-
neous porous media. When the fluid is at rest,
the second order model remains of diffusive
type. This shows that low scale separation has
no impact on the apparent transport regime,
and furthermore highlights the robustness of
the model of effective diffusion, when the fluid
is at rest. When the fluid is in motion and
at Pe = O(ε), we get the model of effective
diffusion at the first order, and the model of
advection-diffusion at the second order. This
result can be generalised to lower orders of the
Péclet number: at Pe = O(εp) with p ≥ 1, the
apparent advective-diffusion regime occurs at
order p+ 1 and the model of effective diffusion
applies at orders lower or equal to p. When
the fluid is in motion and at Pe = O(ε), the
transport regime is advective-diffusive and low
scale separation induces an apparent regime of
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dispersion. Therefore, predominant diffusion
and advection-diffusion in a porous medium at
low scale separation lead to apparent regimes
of advection-diffusion and dispersion, respec-
tively. We may therefore conclude that scale
separation is a crucial issue whenever the fluid
is in motion, since low scale separation then
induces modification of the apparent transport
regime, while it remains of diffusive type at
the second order when the fluid is at rest.

A. Anti-symmetry of tensor Eijk
with respect to its first two indices

Let α be a test function satisfying the condition
of having zero mean. The variational formula-
tion associated with χj is

∫
Ωp

D0
∂α

∂yi

∂χj

∂yi
dΩ = −

∫
Ωp

D0
∂α

∂yj
dΩ, (60)

and the variational formulation associated with
njk reads

∫
Ωp

∂α

∂yi
D0(

∂nlm
∂yi

+ χm δil) dΩ =∫
Ωp

αD0 (
∂χm

∂yl
+ δlm) dΩ. (61)

By taking α = ηlm in Eq. (60) and α = χj in Eq.
(61), we deduce

∫
Ωp

D0(
∂ηlm
∂yj

+ χj Ilm) dΩ =
∫

Ωp
D0χm

∂χj

∂yl

−
∫

Ωp
D0χj

∂χm

∂yl
dΩ. (62)

The left hand side of the above equation is ac-
tually the definition of Ejlm. Using Eq. (62)
for determining the expression of Ejlm, we get:
Ejlm = Ejlm. Since the medium is macroscop-
ically homogeneous, Eijk does not depend on
the macroscopic variable ~x. Consequently, the
anti-symmetry with respect the first two in-
dices implies that

∂

∂xi
(Eijk

∂2c0

∂xj∂xk
) = 0. (63)

B. Boundary value problem for c2

when Pe = O(ε)

Firstly, using Eq. (43), and the second order of
Eq. (40)

∂v1
i

∂yi
+

∂v0
i

∂xi
= 0, (64)

while bearing Eq. (12) in mind, we obtain
∂

∂yi
(c0v1

i ) = −c0 ∂v0
i

∂xi
, (65)

∂

∂yi
(c1v0

i ) = v0
i

∂c1

∂yi
. (66)

Next, we use Eq. (50) and Eq. (16) to derive the
expressions of ∂c0/∂t and of ∂c1/∂xi, respec-
tively. Finally, substituting the thus derived
expressions into Eqs. (49), while using Eq. (21),
we obtain Eq. (52).
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