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HIF-1-driven skeletal muscle adaptations to chronic hypoxia:
molecular insights into muscle physiology

F. B. Favier1,2 • F. A. Britto1,2 • D. G. Freyssenet3 • X. A. Bigard4 • H. Benoit5,6

Abstract Skeletal muscle is a metabolically active tissue

and the major body protein reservoir. Drop in ambient

oxygen pressure likely results in a decrease in muscle cells

oxygenation, reactive oxygen species (ROS) overproduction

and stabilization of the oxygen-sensitive hypoxia-inducible

factor (HIF)-1a. However, skeletal muscle seems to be quite

resistant to hypoxia compared to other organs, probably

because it is accustomed to hypoxic episodes during phys-

ical exercise. Few studies have observed HIF-1a
accumulation in skeletal muscle during ambient hypoxia

probably because of its transient stabilization. Nevertheless,

skeletal muscle presents adaptations to hypoxia that fit with

HIF-1 activation, although the exact contribution of HIF-2, I

kappa B kinase and activating transcription factors, all

potentially activated by hypoxia, needs to be determined.

Metabolic alterations result in the inhibition of fatty acid

oxidation, while activation of anaerobic glycolysis is less

evident. Hypoxia causes mitochondrial remodeling and

enhanced mitophagy that ultimately lead to a decrease in

ROS production, and this acclimatization in turn contributes

to HIF-1a destabilization. Likewise, hypoxia has structural

consequences with muscle fiber atrophy due to mTOR-de-

pendent inhibition of protein synthesis and transient

activation of proteolysis. The decrease in muscle fiber area

improves oxygen diffusion into muscle cells, while inhibi-

tion of protein synthesis, an ATP-consuming process, and

reduction in muscle mass decreases energy demand. Amino

acids released from muscle cells may also have protective

and metabolic effects. Collectively, these results demon-

strate that skeletal muscle copes with the energetic challenge

imposed by O2 rarefaction via metabolic optimization.

Keywords Altitude � Atrophy �
Hypoxia inducible factor � Metabolism � Mitochondria �
Oxidative stress

Introduction

Skeletal muscle is the most voluminous tissue of the body

as it represents almost 40 % of body weight and it accounts

for a significant part (20–30 %) of basal metabolic rate [1].

Skeletal muscle is a heterogeneous tissue composed of

fibers that have distinct contractile and metabolic proper-

ties. Type I fibers (also named slow oxidative) are

mitochondria-rich cells with high myoglobin content and

capillary density responsible for their red colour. Type IIX

and IIB fibers (fast glycolytic) have generally larger cross-

section area with higher glycolytic machinery and are less

perfused, while type IIA (fast oxidative) exhibit an inter-

mediary profile. More than 90 % of the energy produced by

muscle cells comes from the aerobic pathway. A reduction

in O2 availability would therefore challenge skeletal mus-

cle homeostasis. This situation will be exacerbated in case

of physical exercise, as it will enhance ATP demand.
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Reduced O2 pressure (hypobaric hypoxia) and sustained

exercise are experienced by alpinists and mountaineers,

and skeletal muscle adaptations in these subjects have been

studied for several decades. Pioneering works evidenced

the negative effect of hypoxia exposure on skeletal muscle

mass. However, hypoxia is not only restricted to moun-

taineers or high altitude residents, and could result from

pathologies such as anemia, vascular abnormalities, heart

failure, chronic obstructive pulmonary disease or sleep

apnea. Since reduced muscle mass and/or altered metabo-

lism may be associated with enhanced fatigability,

sedentary lifestyle and ultimately increased risk of mor-

tality, the fine understanding of molecular responses driven

by skeletal muscle hypoxia is of particular interest for

athletes, active people, as well as patients. This review

attempts to depict the molecular mechanisms underlying

skeletal muscle adaptations to chronic hypoxia (i.e. several

days) in healthy subjects.

Defining hypoxia and O2 sensing pathway

Intramuscular O2 pressure

The first question when dealing with hypoxia is to define

what hypoxia means for the cells. Hypoxia literally means

under/below oxygen that we could translate by ‘‘less oxy-

gen’’ or even under oxygenation compared to physiological

level. Hypoxic environment can be experimentally repro-

duced by decreasing the proportion of O2 available in

ambient air (normobaric hypoxia), therefore reducing the

inspired O2 fraction (FIO2) from the normal value of

20.9 %. Another way is to decrease the barometric pressure

leading to the reduction in O2 availability while its pro-

portion into the inspired air remains constant (hypobaric

hypoxia). A correspondence between the common altitude

levels used in publications, the FIO2, the ambient and

inspired O2 pressure is presented in Table 1. The definition

of hypoxia raises the issue of a threshold in O2 pressure

(PO2) that will place the cell in hypoxic condition. Data

obtained from magnetic resonance spectroscopy experi-

ments (human) [2, 3], via optical method (rat) [4], surface

electrode (dog) [5] or microcatheter (human) [6] lead to

resting intramuscular PO2 of &27 mmHg in normoxic

conditions. Few data exist on intramuscular PO2 during

hypoxia: Johnson et al. reported a value of &10 mmHg

after 1 min of breathing 7 % O2 (equivalent to 8300 m) in

rat cremaster muscle [4], while Richardson’s group found

more than double (23 mmHg) in humans with an inspired

O2 fraction of 10 % (&5800 m) [2]. During exercise of

even slight intensity (unweighted knee extension at 30 % of

maximal leg O2 uptake), PO2 rapidly drop to &5 mmHg

[3]. There are only subtle changes in intramuscular PO2

between very light and heavy exercise as PO2 decreases to

3 mmHg at 50 % of maximal leg O2 uptake and remains

constant until maximal work rate. During hypoxic trial

(FIO2 = 12 %), PO2 still decreases and reaches

&2 mmHg. More recently, Masschelein et al. showed that

muscle oxygenation, assessed by near-infrared spec-

troscopy, was modestly but significantly reduced (&5 %) in

subjects breathing 10.7 % O2 [7]. In the same work, tissue

oxygenation index was decreased just after a moderate

intensity exercise performed in normoxia (&6 %) and this

decrement was slightly enhanced in hypoxia (&9 %).

Mitochondrion is the final destination of O2 into muscle

cells. In skeletal muscle fiber, the PO2 at which mitochon-

drial metabolism becomes inhibited is about 1.25 mmHg

[8], that is far lower to what it could be encountered in

hypoxic resting muscle. Altogether, it can be concluded that

exercise per se induces significant reduction of muscle cell

PO2 and this diminution is worsened by hypoxic environ-

ment. Secondly, the effect of hypoxic exposure seems less

potent than muscle work to decrease cellular oxygenation,

although the knowledge on how hypoxia alters muscle PO2

at rest is minimal. In tumors, it has been proposed that

expression of hypoxia-regulated genes increases at PO2

below 10–15 mmHg. Energy metabolism would be

impaired at PO2 less than 10–8 mmHg, and apoptosis

would be stimulated at less than 1 mmHg [9, 10]. Skeletal

muscle is probably more resistant to low O2 levels as ATP

production is maintained during exercise and it is currently

not possible to set a value that would mark the occurrence of

cellular hypoxic state. One can only point that long term

residency of humans seems to be critical beyond 5500 m

above sea level, suggesting that whole body oxygenation

becomes critical for chronic exposure at this altitude.

Hypoxia-inducible factor (HIF) activation

The best way to characterize muscle cell hypoxia is to look

at the cellular response. Since the article of Wang and

Table 1 Correspondence between the inspired O2 fraction (FIO2),

the altitude level and the ambient O2 pressure

FIO2 (%) Altitude (m) Ambient PO2

(mmHg)

Inspired PO2

(mmHg)

20.9 0 159 149

15 2700 114 107

12 4400 91 86

10 5800 76 71

8 7400 61 57

6 9400 46 43

1 19,500 8 7

The reduction of PO2 between ambient and inspired air is due to the

saturation with water vapor in the upper airway



Semenza in 1992 [11], Hypoxia inducible factor (HIF) 1

has been described as the master regulator of hypoxia-

mediated cellular adaptations. This a/b heterodimeric

transcription factor regulates more than 100 genes involved

in erythropoiesis/iron metabolism, angiogenesis, vascular

tone, matrix metabolism, glucose metabolism, cell prolif-

eration/survival or apoptosis [12]. Accordingly, Hif1a?/-

heterozygous mice (total deletion is lethal [13]) exhibit

impaired physiological responses to chronic hypoxia,

including alterations in erythropoiesis, pulmonary vascular

remodeling and ventilatory adaptations [14, 15].

While HIF-1b (also known as ARNT) is constitutively

expressed, HIF-1a protein is quickly degraded in normoxic

conditions (half-life \1 min [16]). This degradation is

mediated via hydroxylation of proline residues on HIF-1a
by prolyl-hydroxylases (PHD) leading to its binding to the

von Hippel-Lindau (pVHL) tumour suppressor, ubiqui-

tinylation and subsequent degradation by the proteasome

(Fig. 1). A similar mechanism involving asparagine residue

hydroxylation by Factor Inhibiting HIF (FIH) silences HIF-

1a transactivation domain through inhibition of the tran-

scription coactivators (p300 and CBP) recruitment in

normoxia [17]. PHD-dependent regulation of HIF-1a
implies the presence of O2 and 2-oxoglutarate as substrates

and Fe2? as co-factor. Under reduced O2 pressure, PHD are

inhibited because of the lower O2 availability, but also via

the conversion of Fe2? into Fe3? due to mitochondrial

reactive oxygen species (ROS) production from the com-

plex III of the electron transport chain [18]. Consistently,

data from Chaudhary et al. [19] show a strong relation

between HIF-1a protein content and free radical generation

in hypoxic rat muscle (Fig. 2). Inhibition of PHD results

both in the stabilization and the dimerization of HIF-1a
with the b subunit. Accordingly, hypoxia can be mimicked

by iron chelation (e.g. deferoxamine), some transition

metals (e.g. cobalt) or 2-oxoglutarate inhibitors (e.g.

DMOG), and this property has been widely used to hypoxia

preconditioning. While HIF-1a is subjected to other post-

translationnal regulations such as acetylations, phospho-

rylations or nitrosylations (reviewed in [20]), inhibition of

hydroxylation is the main regulation involved in hypoxia-

induced HIF-1a stabilization.

A specificity of muscle cells could reside in HIF-1a
nuclear translocation. Inhibition of HIF-1a degradation by

CoCl2 is sufficient to cause its nuclear accumulation in

COS-7 cells, whereas this translocation requires low oxygen

levels in primary myotubes. The nuclear import of HIF-1a
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Fig. 1 Regulation of HIF-1a
under normoxia and hypoxia.

HIF-1a associates with HIF-1b
and p300/CBP, binds DNA and

activates transcription under

reduced O2. In presence of O2

and 2-oxoglutarate, prolyl-

hydroxylases (PHD) and factor

inhibiting HIF (FIH)

hydroxylate HIF-1a on prolines

(Pro) 402 and 564 and on

asparagine (Asn) 803,

respectively. Asparagine

hydroxylation (OH) inhibits the

association between HIF-1a and

p300/CBP, while prolines

hydroxylation results in the

binding to the E3 ubiquitin

ligase Von Hippel-Lindau

complex (VHL), leading to its

degradation by the proteasome

Fig. 2 HIF-1a protein content correlates with free radical generation

in skeletal muscle of rats exposed to extreme hypoxia. Rats were

exposed for 3, 7, 14 or 21 days to a simulated altitude of 7620 m.

Higher rate of ROS generation was measured after 14 days in hypoxic

environment. GAS gastrocnemius, SOL soleus. Redrawn from [19]



means an ambiant PO2 of 159 mmHg that is far greater to

that of capillaries) and the reduction in O2 availability is

often drastic (1 % O2 in ambient air equal a PO2 of

7.6 mmHg and probably less into the cells). Cell line (e.g.

cancer vs. non cancer cells) is also of particular importance

since it influences O2 availability into the medium. Some

cell lines are thus hypoxic at 20.9 % O2 because of high

cell density and metabolic rate [32]. This may explain why

hypoxia exposure results in a modest increase in HIF-1a
protein expression in L6 rat myoblasts (0.5 % O2) or pri-

mary rabbit myotubes (3 % O2) [21, 33].

Another major limitation is the short half-life of HIF-1a
that would theoretically impact (decrease) its protein con-

tent during tissue removal or cell harvest since they are

generally performed under normoxic conditions. Recent

advances have been made on this issue by using live cell

imaging under hypoxia. For example, Bagnall et al.

demonstrated that HIF-1a protein is only transiently sta-

bilized (3 h pulses) in HeLa cells exposed to 1 % O2 [34].

The authors showed that the short stabilization of HIF-1a is

due to the up-regulation of PHD2 (while HIF-2a seems

rather regulated by PHD1 [25]). When HIF-1a protein

expression is prolonged over this time lapse, cell engaged

into a p53-related apoptosis program, although whether the

same is true for muscle cells remains to be determined. It

would be thus interesting to determine whether or not

muscle PHD2 content increases during chronic hypoxia.

This mechanism is likely because endurance trained sub-

jects, whose muscles are submitted to intense hypoxic

episodes during contractions, have increased PHD2 and

FIH protein content in their vastus lateralis muscle [35].

Cigarette smoke exposure also increases PHD2 and pVHL

protein expression in mouse skeletal muscle, concomitantly

with reduced HIF-1a content [36]. One may suppose that

muscle HIF-1a expression will return to basal level within

a few hours even if the hypoxic environment persists as it

has been observed in brain, liver and kidney [37]. Cell

culture experiments support this assumption, since HIF-1a
protein peaked between 4 and 24 h of exposure to hypoxia

(1–2 % O2) before returning to modest or undetectable

levels in human myoblasts [38] and human induced

pluripotent stem cells [39]. This could explain why gas-

trocnemius HIF-1a level was not increased in

erytropoietin-deficient mice with an hematocrit of 30 % or

in wild-type animals after 24 h or 14 days at 4500 m [40].

Skeletal muscle may also be low responder to reduced O2

delivery, as HIF luciferase reporter activity did not increase

after acute anemia in skeletal muscle contrary to other

organs such as brain, kidney or liver [41] and skeletal

muscle deoxygenation was half the size of brain in subjects

exposed to 12 % O2 for 4 h [42]. A last point that affects

data about HIF-1a protein expression is the cellular com-

partment used for western blot analysis. While HIF-1a

in muscle cells is concomitant with its dissociation from 
HSP90, a protein that has been proposed to mask the nuclear 
localization signal of HIF-1a under normoxia [21]. Nuclear 
accumulation of pVHL has been observed in C2C12 myo-

tubes exposed to 1 % O2 and this translocation promotes 
HIF-1a stabilization and transcriptional activity in 117 and
786-0 cells [22]. This mechanism was not induced by the 
decrease in PO2 per se, but rather results from the acidosis 
due to the enhancement in anaerobic glycolysis. This is of 
particular interest as skeletal muscle can experience meta-

bolic acidosis during intense exercise. It should be noted that 
HIF-1a can also be activated by growth factors or cytokines 
such as angiotensin II, insulin, Insulin-like growth factor 
(IGF), interleukin-1 or transforming growth factor a under 
normoxic conditions (reviewed in [12]). Intensive resear-
ches are engaged to decipher the cross-talk between HIF-1 
and inflammation notably in the fields of cancer, obesity and 
metabolic disorders. Some works showed normoxic HIF-1a 
activation through a Tumor Necrosis Factor-a/Nuclear 
Factor -kappa B axis [23], although the few data available in 
muscle cells do not support such a regulation [24]. As during 
hypoxia, ROS seem to play a key role for normoxic HIF-1a 
activation [12].

The HIF family also comprises HIF-2 and HIF-3. HIF-
2a protein is subjected to similar regulation by hypoxia 
than HIF-1a and it is implicated in hypoxic response as it 
may confer muscle resistance to ischemia [25]. Yet, muscle 
HIF-2a protein accumulation is low 6 h after ischemia and 
undetectable after endurance exercise [25, 26]. Moreover, 
it seems to have opposite effects on muscle phenotype 
compared to hypoxia and HIF-1a activity (cf. below and 
[27]). Very few data exist on HIF-3 function and there are 
no studies in skeletal muscle. It has been shown that HIF-
3a alternative splicing triggers it transcriptional activity on 
Hypoxia Response Elements [28] and one splice variant 
can bind and inhibit HIF-1a activity [29]. Collectively, 
these results suggest that skeletal muscle adaptations con-
secutive to hypoxic exposure are mainly driven by HIF-1, 
though others transcription factors could be also activated 
during hypoxia and thus contribute to the whole adaptative 
response [30]. Microarray on wild-type and HIF-1a knock-
out mouse embryonic fibroblasts (MEF) supports this 
hypothesis, since 89 % of the genes induced after exposure 
to 1 % O2 were regulated by HIF-1 [31].

Hypoxic stabilization of HIF-1a in skeletal muscle: 
myth or reality?

The characterization of HIF-1 response to hypoxia in vivo 
is limited because of technical outcomes. Extrapolation of 
results obtained from cultured cells to whole body is sub-
jected to caution. Cell culture experiments use extreme 
conditions, as control cells could be hyperoxic (20.9 % O2



protein is usually undetectable in total muscle lysate, the

nuclear fraction contains high amounts of HIF-1a under

normoxia [43], notably compared to others tissues [37].

Isolating the nuclear fraction would thus be helpful to

characterize HIF-1a protein response to reduced O2

availability.

In summary, hypoxia may be defined as a condition of

low O2 pressure sufficient to promote HIF-1a accumulation

in the cells. A key signal for stabilizing HIF-1a is the

increase in ROS production, even more than the decrease in

O2 pressure per se. Marked increase in HIF-1a protein

content has been observed in skeletal muscle during

endurance exercise and/or blood restriction [26]. However,

the stabilization of HIF-1a after systemic hypoxia (e.g.

altitude exposure) has not been systematically reported [40,

44] and seems rather modest (reviewed in [45]), except for

severe hypoxia: FIO2 of 6 % [37] or simulated altitude of

5800 m [46] and 7620 m [19]. Skeletal muscle HIF-1a
accumulation likely reflects severe impairment of whole

body oxygenation and it would be of clinical interest to

measure HIF-1a accumulation in skeletal muscle of patients

suffering from pathologies associated with hypoxemia (re-

duction in arterial O2) or decreased blood flow. Another

explanation for the lack of muscle HIF-1a accumulation

under hypoxia is the transient nature of its stabilization. This

raises an intriguing issue: how such a short up-regulation

could have so durable consequences on muscle phenotype?

Skeletal muscle metabolic adaptations in response
to chronic hypoxia

Pioneering work from Reynafarje in 1962 reported an

increase in myoblogin content and higher cytochrome c

reductase activity in skeletal muscle of highlanders, sug-

gesting that prolonged hypoxia resulted in an enhancement

of skeletal muscle oxidative capacity. However, further

works that studied the effect of hypoxia independently

from other factors, such as cold or exercise, showed that

hypoxia per se promoted oxidative-to-glycolytic metabolic

shift (see Table 2). Accordingly, expression of HIF-1a is

higher in glycolytic vs. oxidative muscles [47] and subjects

carrying a mutation that leads to increased HIF-1a stability

have higher distribution of type II fibers [48]. This effect is

related to the role of HIF-1 on muscle metabolism through

several coordinated mechanisms.

Hypoxia-mediated regulation of metabolic pathways

HIF-1 up-regulates the expression of 11 glycolytic enzymes

(aldolase A, aldolase C, enolase 1, glyceraldehyde-3-phos-

phate dehydrogenase, hexokinase 1, hexokinase 2, lactate

dehydrogenase A, phosphofructokinase L, phosphoglycerate

kinase 1, pyruvate kinase M, and triosephosphate isomerase)

contributing to enhance the glycolytic capacity of cells [49].

Although these targets have often been identified in non-

muscle cells, significant up-regulation of lactate dehydroge-

nase and hexokinase activity has been observed in skeletal

muscle after hypoxia exposure (Table 2). Further analysis of

the literature reveals that most activities of muscle glycolytic

enzymes remain unchanged by hypoxia as recently reviewed

[50]. Given that the glycolytic machinery can support strong

increase in glycolysis at exercise in normoxia, one may sup-

pose that there is no need to further upgrade the maximal

capacity of this system under hypoxia (at least at rest).Muscle

glycolytic capacity (assessed by lactate production under

anoxia) was not enhanced after 1, 16 or 90 days at 5500 m

[51], confirming themarginal effect of chronic hypoxia on the

anaerobic pathway in skeletal muscles of sedentary rats.

Besides, HIF-1 inhibits oxidative metabolism by restrict-

ing the entry of pyruvate into the tricarboxylic acid cycle [52],

through the induction of the pyruvate dehydrogenase kinase

(PDK) 1. PDK1 phosphorylates and inactivates the pyruvate

dehydrogenase enzyme complex that converts pyruvate to

acetyl-coenzyme A in the mitochondria. In muscle cells,

PDK1 up-regulation has been reported in rats exposed to

10 % O2 for 2 weeks [46] and in human satellite cells treated

with PHD inhibitor [35], but not in humans after 7–9 days at

4560 m [44]. This could be related to the kinetics of gene

expression since 24 h of exposure to 4300 m was associated

with increasedPDK1protein contentwhile it returned to basal

level after 1 week [53].

As a consequence of these regulations, muscle lactate

production would be increased by hypoxia exposure. Yet,

lactate concentration and lactate-to-pyruvate ratio were not

elevated in the vastus lateralis of subjects exposed for

either 4 h or 3 weeks at 4300 m [54, 55], while lactate

accumulation was increased in the media of C2C12 myo-

tubes 96 h after treatment with PHD inhibitor [35]. Skeletal

muscle lactate efflux is notably mediated by MCT4, a

monocarboxylate transporter that is upregulated during

in vitro hypoxia in a HIF-1-dependent manner [56].

However, in vivo studies provided equivocal data with no

change, increase or decrease in MCT4 expression [57–59].

Although extensively studied at exercise, regulation of

lactate metabolism under reduced O2 availability is not yet

fully elucidated.

HIF-1 also triggers oxidative metabolism by impairing

fatty acid oxidation and mice lacking skeletal muscle HIF-

1a display increased lipid oxidation [60]. HIF-1 reduces

the DNA binding activity of peroxisome proliferator-acti-

vated receptor a (PPARa)/retinoid X receptor complex, a

major regulator of lipid oxidation [61–63]. Hypoxia also

inhibits the PPARc coactivator 1a (PGC-1a) pathway in a

HIF-1-dependent way in C2C12 myotubes [64]. Along

with the reduction in the transcriptional activity of the



expression (e.g. protein vs. mRNA levels [65]). Since

PPARa and PGC-1a are major regulators of fatty acid

metabolism, hypoxia leads to a decrease in mitochondrial

Table 2 Effect of hypoxia on the activity of metabolic enzymes in human (H), mouse (M) or rat (R) skeletal muscles

Altitude

(m)

Duration

(days)

Specie Muscle Enzymatic activity References

Increased Unchanged Decreased

2100 14 H GAS LDH CS 13 %, HAD 10 % [141]

TB LDH, CS, HAD

3700 63 R SOL CS, PFK HAD, HK, LDH [142]

63 R PLA HK, LDH, PFK CS, HAD

63 R QUA CS, HAD, HK, LDH PFK

3800 7 M Lower

hindlimb

CS, HAD CPT 50 % [67]

4000 35 R SOL CS HAD 51 %

CPT 34 %

[86]

84 R SOL HK 40 % CS, LDH HAD 10 % [143]

84 R EDL LDH 10 % CS, HK HAD 16 %

84 R PLA HK 39 %, LDH
18 %

CS HAD 12 %

4100 56 H VL LDH-H [57]

4300 18 H VL HK 19 % GP, LDH, MDH [144]

21 H VL HK 16 %, PFK
13 %

HAD, SDH [55]

35 R EDL CS CPT 62 % [145]

35 R SOL CPT

35 R QUA HAD 31 %

4878 28 R SOL LDH, PK, HK, CS, MDH [146]

28 R PLA LDH, PK, HK, CS, MDH

5350 70 H VL COX, CS [147]

5500 12

56

R PLA CS 13 %, COX 41 %

CS 16 %, COX 36 %

[65]

21 R PLA

SOL

LDH-H 26 %

LDH 38 %, LDH-M
100 %

LDH (9 %), LDH-M

LDH-H

[59]

90 R GAS LDH [51]

5800 14 R GAS PK CS MDH [46]

14 R GAS COX 55 %, CS 73 % [148]

21 R SOL HK 44 % CS, HAD, LDH, PFK, PK [149]

21 R GAS CS

6000 18 H VL LDH 13 % CS [150]

6100 7 R GAS LDH 54 % CPT, CS (-19 %), HAD (-14 %),

MDH, SDH

[66]

8848 40 H VL HAD, LDH, PFK, PK CS 29 %, HK 38 %,

SDH 28 %

[91]

Glycolytic enzymes are in bold and enzymes specific from lipid oxidation are underlined. The percent changes (increase or decrease) are

indicated when available

Muscles: EDL extensor digitorum longus, GAS gastrocnemius, PLA plantaris, QUA quadriceps, SOL soleus, TB triceps brachii, VL vastus

lateralis

Enzymes: COX cytochrome oxydase, CPT carnitine palmitoyl transferase, CS citrate synthase, GP glycogen phosphorylase, HAD hydroxyacyl-

CoA dehydrogenase, HK hexokinase, LDH lactate dehydrogenase (H or M: heart or muscle isoform), MDH malate dehydrogenase, PFK

phosphofructokinase, PK pyruvate kinase, SDH succinate dehydrogenase

PPAR/PGC-1a complex, hypoxia can also result in a 
decrease in PPARa and PGC-1a protein content [63, 65], 
although there are some discrepancies regarding PGC-1a



import and b-oxidation of fatty acids. This is notably

illustrated by a decrease in carnitine palmitoyl transferase

and hydroxyacyl-coenzyme A dehydrogenase activity that

has frequently been reported (Table 2). The overall effect

of hypoxia logically resulted in a marked reduction of fatty

acid oxidation after 1 week in hypoxic environment [66,

67].

Mitochondrial remodelling and regulation of ROS

production

Mountaineers which participated to expeditions in the

Himalayas (Lhotse or Everest) presented diminished

mitochondrial content [68], with subsarcolemmal mito-

chondria being more affected than the intermyofibrillar

subpopulation [69]. People living permanently at high

altitude (Tibetans and Quechuans) have also reduced

mitochondrial content in skeletal muscle suggesting that

this phenotype is conserved with long term adaptation [70].

Cellular models demonstrated that hypoxic exposure cau-

ses mitochondrial autophagy in an HIF-1-dependent way

[71]. Autophagy is a process involving the formation of

autophagosomes and this mechanism is initiated by the

dissociation of the Beclin1/Bcl-2 complex. HIF-1 mediates

the increase in BNIP3 expression during hypoxia exposure

in skeletal muscle [72–74]. BNIP3 competes with Beclin1

for binding to Bcl-2 leading to the release of Beclin1 [75],

thus promoting the initiation of autophagy and mitophagy.

This process could also be initiated by activation of the

metabolic sensor Sirt1, whose expression is increased

during hypoxia in a HIF-dependent manner in Hep3B or

HT1080 cells [76]. Activation of mitochondrial autophagy

through a Sirt1/BNIP3 pathway attenuated hypoxia-asso-

ciated renal damage [77]. This suggests that the removal of

altered mitochondria is required to limit oxidative dam-

ages. A recent study showed that the mitochondrial

ubiquitin ligase 1 (Mul1) targeted the mitochondrial fusion

protein mitofusin-2 resulting in mitophagy during muscle

wasting [78]. Whether or not Mul1 expression is increased

during hypoxia remains however to be elucidated. Taken

together, all these mechanisms reduce the metabolic con-

tribution of mitochondria and increase the involvement of

the glycolytic pathway to energy supply (Fig. 3). In

agreement, skeletal muscle specific deletion of HIF-1a
results in an increase in oxidative capacity and mitochon-

drial density, a reduction in serum lactate concentration

and enhanced performances during endurance exercise

[79]. The physiological significance of this shift toward

glucose utilization is a decrease in O2 reliance since (1)

stimulation of glycolysis flux increases anaerobic ATP

synthesis and (2) glucose rather fatty acid oxidation is

advantageous when looking at the P/O ratio (i.e. the ATP

produced relative to the amount of O2 consumed).

Another major point concerning the issue of hypoxia-

mediated mitochondrial remodelling is the regulation of

ROS production. Reduced O2 availability promotes ROS
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Fig. 3 Metabolic adaptations of skeletal muscle cell exposed to

hypoxia. HIF-1 coordinately regulates muscle metabolism through (1)

enhanced transcription of glycolytic enzymes, (2) repression of lipid

oxidation via inhibition of PPAR/PGC-1a axis and (3) reduction in

mitochondrial content by induction of the BNIP3-dependent mito-

phagy. ATG mitochondrial autophagy, BNIP3 BCL2/adenovirus E1B

19kDa protein-interacting protein 3, CPT carnitine palmitoyltrans-

ferase, HIF-1 hypoxia-inducible factor 1, PDH pyruvate

dehydrogenase, PDK pyruvate dehydrogenase kinase, PGC-1a
PPARa coactivator 1-a, PPARa peroxisome proliferator-activated

receptor a. Dotted arrows represent transcriptional regulations
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measured by the capillary density, is substantially and

consistently increased in skeletal muscles of both humans

and rats after exposure to hypobaric hypoxia of long dura-

tion [90–92]. An increase in muscle capillarity could be

explained by the transcription of the Vascular Endothelial

Growth Factor (VEGF) by HIF-1a. VEGF has even been

characterized as ‘‘the’’ gene inducible by hypoxia and/or

HIF-1a. Overexpression of both HIF-1a and HIF-2a pro-

motes angiogenesis in mouse heart and rabbit ischemic

skeletal muscle [93]. However, accumulating evidence

suggest that VEGF mRNA is not systematically elevated

throughout the exposition to hypoxia and may be even

decreased after chronic exposure [94]. No study evidenced

an increase in the number of capillaries per fiber in seden-

tary muscles e.g. [68, 90–92, 94–97] and it is now admitted

that ambient hypoxia per se does not promote capillary neo-

formation [45, 98]. The reason of the potential higher

capillary density resides in the reduction of the fiber cross-

sectional area, as hypoxia may cause skeletal muscle atro-

phy, resulting in an enhanced capacity for oxygen diffusion.

Regulation of muscle mass

Structural modifications

The negative effect of altitude on muscle mass has been

objectivized since the 80’s. While this negative influence

was thought to be primarily related to cold exposure, high

energy expenditure and especially hypophagia [99], we and

others have demonstrated that hypoxia per se accounts for

skeletal muscle atrophy [74, 100, 101]. Although numerous

differences exist between studies (altitude level, normo-

baric vs. hypobaric hypoxia, exposure duration, age of

animals and acclimatization duration), analysis of pub-

lished data clearly shows a significant positive correlation

between hypoxia severity and the level of muscle atrophy

in rats (Fig. 4a). Of note, muscle atrophy occurs at altitude

higher than 5000–5500 m. One may suppose that oxidative

muscles would be more affected by hypoxia as they are

highly dependent from O2 delivery, although glycolytic

ones are generally more sensitive to atrophy [102–104].

Based on the Fig. 4a, it is however not clear whether

muscle typology impacts susceptibility to hypoxia (see also

[105]). Analysis of changes in the mean fiber cross-sec-

tional area confirms the worsening of muscle atrophy under

severe hypoxia (Fig. 4b). Type II fibers appear to be

greatly affected by hypoxia, as recently suggested [106],

although this assumption is dampened by the heterogeneity

of data. A greater susceptibility of type II fibers to hypoxia

may be explained by an already low O2 diffusion capacity

resulting from high cross sectional area and poor

capilarization.

formation, and excessive ROS production represents a risk 
of oxidative damage that could lead to cell death if not 
corrected. Hypoxia exposure therefore results in cellular 
adaptations to counteract oxidative stress-induced dam-

ages. The importance of regulating ROS production under 
hypoxia was evidenced by the use of HIF-1a deficient 
MEFs. These cells died after 72 h in hypoxic environment 
due to a dramatic increase in ROS levels contrary to control 
cells that reduced H2O2 production [52]. At the mito-

chondrial level, O2 is used by the cytochrome c oxidase 
(COX) complex. HIF-1 has been shown to up-regulate the 
expression of both COX4-2 subunit and LON, a mito-

chondrial protease targeting COX4-1 in cultured cells [80]. 
This switch from COX4-1 to COX4-2 leads to the 
improvement in the electron transfer and thus reduction in 
O2

2 production. Increased UCP3 expression has also been 
reported after hypoxia exposure [81, 82], and this also 
contributes to impair ROS production. The miRNA miR-

210 is a direct target of HIF-1 and its deletion enhances 
ROS production and decreases survival upon H2O2 treat-

ment of C2C12 myotubes [83]. These adaptations together 
with the degradation of damaged mitochondria by autop-
hagy would thus decrease ROS production. As ROS are 
involved in HIF-1a stabilization (see above), this reduction 
would suppress HIF-1a accumulation consistently with its 
transient up-regulation observed in vitro [34]. Muscle 
proteome of highlanders is characterized by reinforced 
protection against ROS compared to control subjects per-
manently residing at low altitude [84], and hypoxia 
preconditioning by CoCl2 in rats reduced exercise-induced 
skeletal muscle oxidative damages [85]. Altogether, this 
confirms that regulation of redox status under reduced O2 

availability is of key importance.

Mitochondrial function is depreciated in rodents 
exposed to simulated altitude, even when O2 consumption 
was normalized to mitochondrial protein content [86–88]. 
Unexpectedly, mitochondrial respiration was only mod-

estly altered in humans exposed to 4550 m with slight 
reduction in maximal oxidative phosphorylation capacity 
[89]. This result is all the more surprising in that O2 con-

sumption was expressed per mg of muscle, which therefore 
does not take into account the potential decrease in mito-

chondrial density. Another difference between this latter 
study and the formers is that it was performed on perme-

abilized fibers and not on isolated mitochondria. Since this 
in situ approach appears to be more relevant from a 
physiological view, it would be interesting to confirm this 
result.

Skeletal muscle vascularization

Oxidative metabolism of muscle cells is tightly related to 
blood perfusion and muscular capillarity. Capillarization, as



Assuming that myofibrillar proteins represent about

85 % of the fiber volume [107], the regulation of skeletal

muscle mass is closely related to dynamic balance between

protein synthesis and degradation. Cellular experiments

reveal that a marked reduction in O2 availability decreases

the rate of protein synthesis in various cell lines including

C2C12 myoblasts [108]. In rats, Preedy et al. observed a

non-significant decrease in muscle protein synthesis

(14–17 %) after 6 h at 10 % O2 [109]. Data in humans are

scarce and are often biased by confounding factors such as

cold exposure or increased physical activity (trekking) in

the days preceding the analysis [110, 111]. Etheridge et al.

showed that acute hypoxia had no effect on fractional

synthesis rate of myofibrillar proteins at rest, whereas it

blunted the anabolic effect of resistance exercise [112].

Interestingly, protein synthesis level was correlated to

arterial saturation suggesting that severe hypoxemia would

affect muscle anabolism.

O2-sensitive signaling in the control of muscle mass

Activity of the Akt/mTOR pathway is a critical regulator of

muscle mass by regulating protein synthesis (via the

mTOR complex 1: TORC1) and proteolysis [113, 114]. We

reported a down-regulation of Akt/mTOR pathway after

hypoxic exposure in rats [101]. One explanation of this

inhibition could be a reduction in insulin-like growth factor

(IGF) 1 expression, the upstream regulator of Akt/mTOR

pathway. Nevertheless, IGF-1 mRNA or protein do not

present significant variations under sustained hypoxia [19,

101]. We recently observed that hypoxia blocked IGF-1-

mediated activation of the Akt/mTOR pathway in C2C12

myotubes [115]. On the contrary, the expression of myo-

statin, a muscle-secreted factor which reduces muscle mass

through inhibition of the Akt/mTOR pathway [116, 117], is

increased by hypoxia exposure [106, 118, 119]. Inhibition

of myostatin signaling (antibody administration, receptor

inhibition or genetic ablation) partly prevents muscle

atrophy under hypoxic conditions, further demonstrating

that myostatin contributes to hypoxia-mediated muscle

wasting [105, 119]. Loss in food intake due to hypoxia

could also increase glucocorticoids pathway with the

induction of KLF15 expression [106], a glucocorticoid

receptor target involved in amino acid degradation to

provide carbohydrate backbones for gluconeogenesis.

Other circulating factors such as cytokines or adipokines

may be released during hypoxia exposure, notably because

of the loss of adipose tissue. However, analysis of blood

cytokines profile [e.g. Tumor Necrosis Factor-a, Inter-

leukin (IL)-1b, adiponectin, chemokine (C–C motif) ligand

5, monocyte chemoattractant protein-1] did not reveal any

marked alteration with hypoxia, with the exception of an

increase in IL-6 content [120]. From this study, cytokines

do no seems to be implicated in hypoxia-induced muscle

atrophy, although further work is required to decipher their

influence on muscle phenotype.

The Akt/mTOR pathway is also regulated by AMP-ac-

tivated kinase (AMPK), which causes TORC1 inhibition

[121]. The a catalytic subunit of AMPK is activated when

cellular energy levels are low and stimulates processes that

generate ATP (fatty acid oxidation), while inhibiting those

0

5

10

15

20

25

30

35

m
us

cl
e 

FC
SA

 lo
ss

 (%
)

simulated altitude (m)

I

IIA

IIX/B

type II
R²=0.38
P=0.018

type I
R²=0.79
P<0.001

0

5

10

15

20

25

30

35

40

3,500 4,500 5,500 6,500 7,500 8,500 9,500

3,500 4,500 5,500 6,500 7,500 8,500

m
us

cl
e 

w
ei

gh
t l

os
s 

(%
)

simulated altitude (m)

SOL

PLA

TA

EDL

GAS

R²=0.68
P<0.001

A

B

C D

Fig. 4 Skeletal muscle atrophy in rats and humans exposed to

simulated altitude between 1 and 6 weeks. a muscle weight (rats only)

and b fiber cross-sectional area (FCSA) reduction (rats and humans) in

function to simulated altitude level (hypobaric and normobaric hypox-

ia). Type IIX/B fibers measured at 8848 m are indeed undifferentiated

type II fibers. c, d representative pictures from hematoxylin-eosin

stained cross sections of rat plantaris muscle c in normoxia or d after 12

days at 5500 m (obtained from [118] with permission). Data for muscle

weight and FCSA were obtained from [19, 101, 118, 123, 146, 149,

151–155] and [55, 91, 96, 101, 142, 151, 153, 155], respectively



discordant [19, 101]. Kinetics is likely of particular

importance when studying these markers. Some works

reported an increase in MAFbx mRNA [74, 119], while this

expression in not always observed after prolonged expo-

sure [101, 123]. The other well studied E3 ligase MuRF1

presents a similar expression pattern with an increase

during the first week of hypoxia exposure [74, 123] and a

return to basal level during longer exposure [101, 123].

These patterns of MuRF1 and MAFbx expression in

response to hypoxia are similar to those reported during

unloading and muscle inactivity [129]. Nedd4, another E3

ligase that promotes skeletal muscle atrophy, has recently

been shown to be involved in hypoxic response in lung

[130]. Accordingly, Nedd4 expression was increased in

EDL (but not in soleus) muscle of rodents exposed to 8 %

O2 [106]. While increase in MuRF1 and MAFbx expres-

sion could be related to the semi-starvation induced by

hypoxia, Nedd4 regulation seems to be only dependent

from O2 pressure. Other E3 ligases such as TRAF6,

MUSA-1 or Trim32 participate to the control of muscle

mass [129], but knowledge about their regulation under

hypoxia is minimal.

Autophagy is stimulated via different mechanisms

among which the activation of ULK1 resulting from

TORC1 inhibition. Hypoxia exposure has been associated

with an increase in the expression of autophagic markers

such as BNIP3 [72–74] or LC3 [74]. As mentioned above,

activation of muscle mitophagy under hypoxic environ-

ment seems evident. However, the involvement of

autophagy in the control of muscle mass during hypoxia

exposure has not been extensively described and remains to

be characterized.

ATF4 [131], ATF3 [132] and IjB kinase [133] are

directly regulated by PHDs in non-muscle cells and may

thus play a role in cellular response to O2 deprivation

independently from the HIFs pathways. ATF4 could be of

particular interest since it promotes muscle atrophy [134,

135] and its mRNA was increased in the gastrocnemius of

mice exposed to severe hypoxia [74]. Activation of IjB
kinase in hypoxic muscle would increase Nuclear Factor

jB (NF-jB) transcriptional activity, and NF-jB is known

to promote muscle wasting through stimulation of UPS-

mediated protein breakdown [136]. Studying the contri-

bution of these transcription factors to muscle remodeling

during hypoxia would thus be helpful to better understand

signals that trigger skeletal muscle atrophy.

A transient activation of proteolysis together with a

sustained reduction in protein synthesis would be advan-

tageous to cope with the energetic challenge induced by

hypoxia. On the one hand, protein synthesis is a highly

ATP-consuming process accounting for&25 % of the total

metabolic rate [1]. On the other hand, a transient activation

of proteolytic systems would promote a rapid decrease in

that use ATP (triglyceride and protein synthesis). In sub-
jects exposed to 11.5 % O2 for 20 min, Wadley et al. did 
not reported any alteration of skeletal muscle AMPKa1 
activity, AMPKa2 activity, AMPKa Thr172 phosphoryla-
tion, or ACCb Ser221 phosphorylation (a direct target of 
AMPK) [122]. While AMPK can be transiently activated 
by acute hypoxia, this activation does not seem to persist 
after several days at altitude [73, 101, 118, 123]. These 
observations are consistent with the stability of AMP, ADP 
and ATP concentrations after 21 days at 4300 m [55] and 
do not support a role for AMPK in Akt/mTOR inhibition 
during skeletal muscle hypoxia in vivo.

Another negative regulator of TORC1 is the stress 
response protein REDD1 (for regulated in development and 
DNA damages). REDD1 has a low level of expression in 
skeletal muscle under basal conditions, while its expression 
is strongly induced by glucocorticoid and is required for 
glucocorticoid-induced muscle atrophy [124]. REDD1 is a 
direct target of HIF-1 and its expression in skeletal muscle 
is increased in response to hypoxia [7, 101, 118, 125]. It 
would therefore be a potential candidate to explain muscle 
loss at altitude even if REDD1 expression does not always 
correlate with mTOR inhibition [7, 118]. Its biological 
function is likely not restricted to protein metabolism, since 
it localizes into the mitochondria and triggers ROS pro-
duction in cultured cells [126].

BNIP3 has also been proposed to inhibit mTOR through 
its interaction with Rheb [127]. This mechanism still needs 
to be confirmed as BNIP3-mediated inhibition of mTOR 
has never been reproduced in skeletal muscle or during 
hypoxia. Protein translation could also be down-regulated 
in a TORC1-independent way via the inhibition of the 
initiation factor eIF2. While eIF2-related inhibition of 
protein synthesis has been well characterized in tumori-

genic cells [128], the few studies investigating such a 
mechanism in skeletal muscle do not support this hypoth-
esis [74, 125].

In summary, hypoxia-driven reduction in skeletal mus-

cle protein synthesis mostly results from the de-activation 
of the Akt/mTOR pathway consequently to upregulation of 
myostatin or REDD1.

Hypoxia-related regulation of proteolytic systems

Muscle protein breakdown mainly results from activation 
of the ubiquitin/proteasome system (UPS) and the autop-
hagy/lysosome pathway, both processes being controlled 
by the Akt/mTOR signaling. The TORC2/Akt axis triggers 
the expression of the E3-ligases MAFbx and MuRF1 or 
other components of the UPS through FoxOs cytosolic 
sequestration. Only few experiments investigated UPS 
activation under reduced O2 conditions and results 
regarding enzymatic activity of the 20S proteasome remain



muscle mass and thus in whole body metabolic rate and the

release of amino acids during muscle breakdown can also

be beneficial to protect from hypoxia since they will act as

metabolic fuel as well as metabolic modulator synergisti-

cally with ketone bodies [137].

Conclusion and perspectives

Hypoxia effects are primarily thought to be deleterious for

skeletal muscle function, especially for mountaineers or

active people who have to exercise at altitude. Neverthe-

less, structural and metabolic regulations that have been

characterized result in metabolic optimization (Fig. 5) and

are able to minimize the effects of decreased oxygen

supply on muscle endurance. These effects are mainly

related to HIF-1a, although it may be only transiently

stabilized. Prolonged HIF-1a expression could promote

apoptosis [34] suggesting that successful acclimatization

needs destabilization of HIF-1a, notably via reduced ROS

production. However, data about HIF-1a expression

kinetics in skeletal muscle tissue of healthy subjects or

patients with impaired O2 delivery are still lacking. The

exact contribution of HIF-2 in hypoxia-induced adapta-

tions also needs to be clarified, especially as it has been

proposed in cancer cells that HIF-2 is more involved in

chronic adaptation to hypoxia, while HIF-1 would mediate

acute responses [138]. The role of miRNAs in hypoxic

response has emerged into the field of cancer research, but

this remains an unresolved question concerning muscle

adaptations to low O2. Among the hypoxia-induced tar-

gets, miR-199a and -210 may be relevant candidates

since they regulate muscle cell phenotype in a HIF-1-de-

pendent way [83, 139]. Concerning experimental designs,

it remains to determine whether hypobaric and normobaric

hypoxia induce similar effects [140]. In addition,

extrapolation of data obtained on small animals to humans

requires caution because of differences in O2 diffusion

capacity. Identical PIO2 could have attenuated effects in

rodents compared to patients explaining the use of extreme

hypoxia in animal studies [19, 74]. Despite the increasing

number of people travelling to high altitude or suffering

from pathologies associated with reduced O2 delivery, the

response of human skeletal muscle to hypoxic episodes

and its interplay with other organs is still an open

challenge.
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