. Fearon-k, F. Strasser, S. Anker, I. Bosaeus, E. Bruera et al., Definition and classification of cancer cachexia: an international consensus, The Lancet Oncology, vol.12, issue.5, pp.489-495, 2011.
DOI : 10.1016/S1470-2045(10)70218-7

J. Argilés, R. Moore-carrasco, G. Fuster, S. Busquets, and F. López-soriano, Cancer cachexia: the molecular mechanisms, The International Journal of Biochemistry & Cell Biology, vol.35, issue.4, pp.405-409, 2003.
DOI : 10.1016/S1357-2725(02)00251-0

M. Tisdale, Cachexia in cancer patients, Nature Reviews Cancer, vol.17, issue.11, pp.862-871, 2002.
DOI : 10.1016/0925-4439(93)90044-2

P. Costelli and F. Baccino, Cancer cachexia: from experimental models to patient management, Current Opinion in Clinical Nutrition and Metabolic Care, vol.3, issue.3, pp.177-181, 2000.
DOI : 10.1097/00075197-200005000-00003

M. Tisdale, Mechanisms of Cancer Cachexia, Physiological Reviews, vol.89, issue.2, pp.381-410, 2009.
DOI : 10.1152/physrev.00016.2008

J. Argilés, S. Busquets, B. Stemmler, and F. López-soriano, Cancer cachexia: understanding the molecular basis, Nature Reviews Cancer, vol.7, issue.11, pp.754-762, 2014.
DOI : 10.1097/SPC.0000000000000015

J. Ambrus, C. Ambrus, I. Mink, and J. Pickren, Causes of death in cancer patients, J Med, vol.6, pp.61-64, 1975.

G. Burch, J. Phillips, and A. Ansari, The Cachectic Heart, Diseases of the Chest, vol.54, issue.5, pp.403-409, 1968.
DOI : 10.1378/chest.54.5.403

M. Ewer and S. Ewer, Cardiotoxicity of anticancer treatments, Nature Reviews Cardiology, vol.10, issue.9, pp.547-558, 2015.
DOI : 10.1016/S0140-6736(13)61094-6

S. Kazemi-bajestani, H. Becher, . Fassbender-k, Q. Chu, and B. Ve, Concurrent evolution of cancer cachexia and heart failure: bilateral effects exist, Journal of Cachexia, Sarcopenia and Muscle, vol.42, issue.Suppl 1, pp.95-104, 2014.
DOI : 10.1345/aph.1K359

M. Kt, The pathogenesis and treatment of cardiac atrophy in cancer cachexia, Am J Physiol Heart Circ Physiol, vol.310, pp.466-477, 2016.

M. Tian, Y. Nishijima, M. Asp, M. Stout, P. Reiser et al., Cardiac alterations in cancer-induced cachexia in mice, Int J Oncol, vol.37, pp.347-353, 2010.

S. Shadfar, M. Couch, . Mckinney-ka, L. Weinstein, X. Yin et al., Oral Resveratrol Therapy Inhibits Cancer-Induced Skeletal Muscle and Cardiac Atrophy In Vivo, Nutrition and Cancer, vol.114, issue.5, pp.749-762, 2011.
DOI : 10.1038/oby.2004.20

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623008/pdf

P. Cosper and L. Leinwand, Cancer Causes Cardiac Atrophy and Autophagy in a Sexually Dimorphic Manner, Cancer Research, vol.71, issue.5, pp.1710-1720, 2011.
DOI : 10.1158/0008-5472.CAN-10-3145

T. Matsuyama, T. Ishikawa, T. Okayama, . Oka-k, S. Adachi et al., Tumor inoculation site affects the development of cancer cachexia and muscle wasting, International Journal of Cancer, vol.795, issue.9, pp.2558-2565, 2015.
DOI : 10.1111/j.1749-6632.1996.tb52707.x

J. Springer, A. Tschirner, A. Haghikia, S. Von-haehling, H. Lal et al., Prevention of liver cancer cachexia-induced cardiac wasting and heart failure, European Heart Journal, vol.35, issue.14, pp.932-941, 2014.
DOI : 10.1093/eurheartj/eht302

M. Tian, M. Asp, Y. Nishijima, and M. Belury, Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice, Int J Oncol, vol.39, pp.1321-1326, 2011.

A. Wysong, M. Couch, S. Shadfar, L. Li, J. Rodriguez et al., NF-??B Inhibition Protects against Tumor-Induced Cardiac Atrophy in Vivo, The American Journal of Pathology, vol.178, issue.3, pp.1059-1068, 2011.
DOI : 10.1016/j.ajpath.2010.12.009

URL : https://doi.org/10.1016/j.ajpath.2010.12.009

M. Sjöström, M. Wretling, I. Edén, E. , and L. , Ultrastructural changes and enzyme activities for energy production in hearts concomitant with tumor-associated malnutrition, Journal of Surgical Research, vol.42, issue.3, pp.304-313, 1987.
DOI : 10.1016/0022-4804(87)90148-X

M. Schäfer, O. Cu, M. Rohm, E. Baysal-temel, L. Lehmann et al., Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia, Molecular Metabolism, vol.5, issue.2, pp.67-78, 2015.
DOI : 10.1016/j.molmet.2015.11.004

J. Van-der-velden, D. Merkus, B. Klarenbeek, A. James, N. Boontje et al., Alterations in Myofilament Function Contribute to Left Ventricular Dysfunction in Pigs Early After Myocardial Infarction, Circulation Research, vol.95, issue.11, pp.85-95, 2004.
DOI : 10.1161/01.RES.0000149531.02904.09

G. Bonne, L. Carrier, P. Richard, B. Hainque, F. Tesson et al., G??n??tique des cardiomyopathies hypertrophiques., m??decine/sciences, vol.14, issue.10, pp.1054-1066, 1998.
DOI : 10.4267/10608/910

F. Korte, T. Herron, M. Rovetto, and M. Ks, Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts, AJP: Heart and Circulatory Physiology, vol.289, issue.2, pp.801-812, 2005.
DOI : 10.1152/ajpheart.01227.2004

URL : http://ajpheart.physiology.org/content/ajpheart/289/2/H801.full.pdf

H. Ashrafian, M. Frenneaux, and L. Opie, Metabolic Mechanisms in Heart Failure, Circulation, vol.116, issue.4, pp.434-448, 2007.
DOI : 10.1161/CIRCULATIONAHA.107.702795

N. Manne, M. Lima, R. Enos, P. Wehner, J. Carson et al., Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse, International Journal of Oncology, vol.42, issue.6, pp.2134-2140, 2013.
DOI : 10.3892/ijo.2013.1893

S. Palus, S. Von-haehling, . Flach-vc, A. Tschirner, W. Doehner et al., Simvastatin reduces wasting and improves cardiac function as well as outcome in experimental cancer cachexia, International Journal of Cardiology, vol.168, issue.4, pp.3412-3418, 2013.
DOI : 10.1016/j.ijcard.2013.04.150

. Trobec-k, S. Palus, A. Tschirner, S. Von-haehling, W. Doehner et al., Rosiglitazone reduces body wasting and improves survival in a rat model of cancer cachexia, Nutrition, vol.30, issue.9, pp.1069-1075, 2014.
DOI : 10.1016/j.nut.2013.12.005

X. Zhou, J. Wang, J. Lu, Y. Song, Q. Jiao et al., Reversal of Cancer Cachexia and Muscle Wasting by ActRIIB Antagonism Leads to Prolonged Survival, Cell, vol.142, issue.4, pp.531-543, 2010.
DOI : 10.1016/j.cell.2010.07.011

C. Mühlfeld, D. Sk, F. Heinzel, A. Schmidt, H. Post et al., Cancer Induces Cardiomyocyte Remodeling and Hypoinnervation in the Left Ventricle of the Mouse Heart, PLoS ONE, vol.204, issue.53, p.20424, 2011.
DOI : 10.1371/journal.pone.0020424.t007

E. Hinch, M. Sullivan-gunn, . Vaughan-vc, M. Mcglynn, and P. Lewandowski, Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiquitin proteosome system in the cachectic heart muscle of nude mice, Journal of Cachexia, Sarcopenia and Muscle, vol.39, issue.4, pp.287-293, 2013.
DOI : 10.1073/pnas.0404341102

F. Borges, P. Marinello, A. Cecchini, F. Blegniski, F. Guarnier et al., Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced cardiac cachexia, Pathophysiology, vol.21, issue.4, pp.257-265, 2014.
DOI : 10.1016/j.pathophys.2014.05.003

J. Argilés, C. Fontes-oliveira, M. Toledo, F. López-soriano, and S. Busquets, Cachexia: a problem of energetic inefficiency, Journal of Cachexia, Sarcopenia and Muscle, vol.5, issue.4, pp.279-286, 2014.
DOI : 10.1007/s13539-014-0154-x

I. Bosaeus, P. Daneryd, E. Svanberg, and L. , Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients, International Journal of Cancer, vol.50, issue.3, pp.380-383, 2001.
DOI : 10.1038/bjc.1998.543

L. Lindmark, . Bennegård-k, E. Edén, L. Ekman, T. Scherstén et al., Resting energy expenditure in malnourished patients with and without cancer, Gastroenterology, vol.87, pp.402-408, 1984.

M. Aon and S. Cortassa, Mitochondrial network energetics in the heart, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.40, issue.6, pp.599-613, 2012.
DOI : 10.1016/j.yjmcc.2005.12.012

G. Lopaschuk, J. Ussher, C. Folmes, J. Jaswal, and W. Stanley, Myocardial Fatty Acid Metabolism in Health and Disease, Physiological Reviews, vol.90, issue.1, pp.207-258, 2010.
DOI : 10.1152/physrev.00015.2009

J. Madrazo and K. Dp, The PPAR trio: Regulators of myocardial energy metabolism in health and disease, Journal of Molecular and Cellular Cardiology, vol.44, issue.6, pp.968-975, 2008.
DOI : 10.1016/j.yjmcc.2008.03.021

C. Drott, A. Waldenström, and L. , Cardiac sensitivity and responsiveness to ??-adrenergic stimulation in experimental cancer and undernutrition, Journal of Molecular and Cellular Cardiology, vol.19, issue.7, pp.675-683, 1987.
DOI : 10.1016/S0022-2828(87)80376-0

C. Drott and L. , Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats, Journal of Surgical Research, vol.49, issue.1, pp.62-68, 1990.
DOI : 10.1016/0022-4804(90)90112-F

A. Montel-hagen, L. Blanc, M. Boyer-clavel, C. Jacquet, M. Sitbon et al., The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis, Blood, vol.112, issue.12, pp.4729-4738, 2008.
DOI : 10.1182/blood-2008-05-159269

URL : https://hal.archives-ouvertes.fr/hal-00338636

. Yasumoto-k, N. Mukaida, A. Harada, M. Akiyama, E. Nakashima et al., Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice, Cancer Res, vol.55, pp.921-927, 1995.

T. Kanda and T. Takahashi, Interleukin-6 and Cardiovascular Diseases, Japanese Heart Journal, vol.45, issue.2, pp.183-193, 2004.
DOI : 10.1536/jhj.45.183

URL : https://www.jstage.jst.go.jp/article/jhj/45/2/45_2_183/_pdf

S. Saito, R. Aikawa, I. Shiojima, R. Nagai, and Y. Yazaki, Endothelin-1 induces expression of fetal genes through the interleukin-6 family of cytokines in cardiac myocytes, FEBS Letters, vol.30, issue.1, pp.103-107, 1999.
DOI : 10.1074/jbc.273.29.18146

B. Pajak, S. Orzechowska, B. Pijet, M. Pijet, A. Pogorzelska et al., Crossroads of cytokine signaling -the chase to stop muscle cachexia, J Physiol Pharmacol, vol.59, pp.251-264, 2008.

S. Bodine, E. Latres, S. Baumhueter, L. Nunez, L. Clarke et al., Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.294, issue.5547, pp.1704-1708, 2001.
DOI : 10.1126/science.1065874

P. Costelli, N. Carbó, L. Tessitore, G. Bagby, F. Lopez-soriano et al., Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model., Journal of Clinical Investigation, vol.92, issue.6, pp.2783-2789, 1993.
DOI : 10.1172/JCI116897

A. Johnston, M. Jenkinson, L. Laine, D. Emmrich-k, P. Faou et al., Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival, Cell, vol.162, issue.6, pp.1365-1378, 2015.
DOI : 10.1016/j.cell.2015.08.031

URL : https://doi.org/10.1016/j.cell.2015.08.031

J. Marin-corral, C. Fontes, S. Pascual-guardia, F. Sanchez, M. Olivan et al., Redox Balance and Carbonylated Proteins in Limb and Heart Muscles of Cachectic Rats, Antioxidants & Redox Signaling, vol.12, issue.3, pp.365-380, 2010.
DOI : 10.1089/ars.2009.2818

S. Busquets, G. Fuster, E. Ametller, M. Olivan, M. Figueras et al., Resveratrol does not ameliorate muscle wasting in different types of cancer cachexia models, Clinical Nutrition, vol.26, issue.2, pp.239-244, 2007.
DOI : 10.1016/j.clnu.2006.12.001

D. Gould, I. Lahart, A. Carmichael, Y. Metsios, and G. , Cancer cachexia prevention via physical exercise: molecular mechanisms, Journal of Cachexia, Sarcopenia and Muscle, vol.90, issue.1, pp.111-124, 2013.
DOI : 10.1001/archinte.166.11.1225

URL : http://onlinelibrary.wiley.com/doi/10.1007/s13539-012-0096-0/pdf

G. Mantovani, C. Madeddu, A. Macciò, G. Gramignano, M. Lusso et al., Cancer-related anorexia/ cachexia syndrome and oxidative stress: An innovative approach beyond current treatment, Cancer Epidemiol Biomarkers Prev, vol.13, pp.1651-1659, 2004.
DOI : 10.1586/14737140.3.3.381

O. Min-k,-kwon, A. Smuder, M. Wiggs, . Sollanek-kj, D. Christou et al., Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy, The Journal of Physiology, vol.279, issue.8, pp.2017-2036, 2015.
DOI : 10.1074/jbc.M402999200

J. Springer, A. Tschirner, S. Hartman-k,-von-haehling, S. Anker, and W. Doehner, The xanthine oxidase inhibitor oxypurinol reduces cancer cachexia-induced cardiomyopathy, International Journal of Cardiology, vol.168, issue.4, pp.3527-3531, 2013.
DOI : 10.1016/j.ijcard.2013.05.063

J. Scott, A. Khakoo, J. Mackey, M. Haykowsky, P. Douglas et al., Modulation of Anthracycline-Induced Cardiotoxicity by Aerobic Exercise in Breast Cancer: Current Evidence and Underlying Mechanisms, Circulation, vol.124, issue.5, pp.642-650, 2011.
DOI : 10.1161/CIRCULATIONAHA.111.021774

M. Asp, M. Tian, A. Wendel, and M. Belury, Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice, International Journal of Cancer, vol.71, issue.3, pp.756-763, 2010.
DOI : 10.1172/JCI200420174

S. Gray and K. Jk, New insights into insulin resistance in the diabetic heart, Trends in Endocrinology & Metabolism, vol.22, issue.10, pp.394-403, 2011.
DOI : 10.1016/j.tem.2011.05.001

L. Zhang, J. Jaswal, J. Ussher, S. Sankaralingam, C. Wagg et al., Cardiac Insulin-Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure After Pressure-Overload Hypertrophy, Circulation: Heart Failure, vol.6, issue.5, pp.1039-1048, 2013.
DOI : 10.1161/CIRCHEARTFAILURE.112.000228

A. Padrão, D. Moreira-gonçalves, P. Oliveira, C. Teixeira, A. Faustino-rocha et al., Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia, Archives of Biochemistry and Biophysics, vol.567, pp.13-21, 2015.
DOI : 10.1016/j.abb.2014.12.026

A. Amirouche, A. Durieux, S. Banzet, N. Bonnefoy, R. Mouret et al., Down-Regulation of Akt/Mammalian Target of Rapamycin Signaling Pathway in Response to Myostatin Overexpression in Skeletal Muscle, Endocrinology, vol.150, issue.1, pp.286-294, 2009.
DOI : 10.1210/en.2008-0959

URL : https://hal.archives-ouvertes.fr/inserm-00384326

M. Morissette, J. Stricker, M. Rosenberg, C. Buranasombati, E. Levitan et al., Effects of myostatin deletion in aging mice, Aging Cell, vol.6, issue.5, pp.573-583, 2009.
DOI : 10.1161/01.CIR.101.7.790

J. Heineke, M. Auger-messier, J. Xu, M. Sargent, A. York et al., Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure, Circulation, vol.121, issue.3, pp.419-425, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.882068

M. Willis, J. Schisler, L. Li, J. Rodríguez, E. Hilliard et al., Cardiac Muscle Ring Finger-1 Increases Susceptibility to Heart Failure In Vivo, Circulation Research, vol.105, issue.1, pp.80-88, 2009.
DOI : 10.1161/CIRCRESAHA.109.194928

URL : http://circres.ahajournals.org/content/circresaha/105/1/80.full.pdf

M. Willis, M. Rojas, L. Li, C. Selzman, R. Tang et al., Muscle ring finger 1 mediates cardiac atrophy in vivo, AJP: Heart and Circulatory Physiology, vol.296, issue.4, pp.997-1006, 2009.
DOI : 10.1152/ajpheart.00660.2008

URL : http://ajpheart.physiology.org/content/ajpheart/296/4/H997.full.pdf

H. Li, . Kedar-v, C. Zhang, H. Mcdonough, R. Arya et al., Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex, Journal of Clinical Investigation, vol.114, issue.8, pp.1058-1071, 2004.
DOI : 10.1172/JCI200422220

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522252/pdf

Y. Yamamoto, Y. Hoshino, T. Ito, T. Nariai, T. Mohri et al., Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes, Cardiovascular Research, vol.79, issue.1, pp.89-96, 2008.
DOI : 10.1093/cvr/cvn076

URL : https://academic.oup.com/cardiovascres/article-pdf/79/1/89/17391639/cvn076.pdf

M. Willis, A. Bevilacqua, T. Pulinilkunnil, P. Kienesberger, M. Tannu et al., The role of ubiquitin ligases in cardiac disease, Journal of Molecular and Cellular Cardiology, vol.71, pp.43-53, 2014.
DOI : 10.1016/j.yjmcc.2013.11.008

E. Masiero and M. Sandri, Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles, Autophagy, vol.6, issue.2, pp.307-309, 2010.
DOI : 10.4161/auto.6.2.11137

B. Levine, Autophagy in the Pathogenesis of Disease, Cell, vol.132, issue.1, pp.27-42, 2008.
DOI : 10.1016/j.cell.2007.12.018

. Musolino-v, S. Palus, A. Tschirner, C. Drescher, M. Gliozzi et al., Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation, Journal of Cachexia, Sarcopenia and Muscle, vol.6, issue.5, pp.555-566, 2016.
DOI : 10.1002/jcsm.12089

G. Milan, R. V. Pescatore, F. Armani, A. Paik, J. Frasson et al., Regulation of autophagy and the ubiquitin???proteasome system by the FoxO transcriptional network during muscle atrophy, Nature Communications, vol.98, p.6670, 2015.
DOI : 10.1096/fj.10-168799

S. Judge, C. Wu, A. Beharry, B. Roberts, L. Ferreira et al., Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia, BMC Cancer, vol.4, issue.6, p.997, 2014.
DOI : 10.1038/ncomms2964

C. Skurk, Y. Izumiya, H. Maatz, P. Razeghi, I. Shiojima et al., The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling, Journal of Biological Chemistry, vol.79, issue.21, pp.20814-20823, 2005.
DOI : 10.1001/jama.292.19.2350

D. Cai, J. Frantz, N. Tawa, . Jr, P. Melendez et al., IKK??/NF-??B Activation Causes Severe Muscle Wasting in Mice, Cell, vol.119, issue.2, pp.285-298, 2004.
DOI : 10.1016/j.cell.2004.09.027

URL : https://doi.org/10.1016/j.cell.2004.09.027

H. Li, S. Malhotra, and A. Kumar, Nuclear factor-kappa B signaling in skeletal muscle atrophy, Journal of Molecular Medicine, vol.19, issue.Spec No 2, pp.1113-1126, 2008.
DOI : 10.1152/ajpcell.00129.2003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597184/pdf

P. Razeghi, M. Wang, . Youker-ka, L. Golfman, S. Stepkowski et al., Lack of NF-??B1 (p105/p50) attenuates unloading-induced downregulation of PPAR?? and PPAR??-regulated gene expression in rodent heart, Cardiovascular Research, vol.74, issue.1, pp.133-139, 2007.
DOI : 10.1016/j.cardiores.2006.12.021

M. Sack, T. Rader, S. Park, J. Bastin, S. Mccune et al., Fatty Acid Oxidation Enzyme Gene Expression Is Downregulated in the Failing Heart, Circulation, vol.94, issue.11, pp.2837-2842, 1996.
DOI : 10.1161/01.CIR.94.11.2837

D. Shao, S. Oka, T. Liu, P. Zhai, T. Ago et al., A Redox-Dependent Mechanism for Regulation of AMPK Activation by Thioredoxin1 during Energy Starvation, Cell Metabolism, vol.19, issue.2, pp.232-245, 2014.
DOI : 10.1016/j.cmet.2013.12.013

Y. Li, D. Chen, S. Watkins, and A. Feldman, Mitochondrial Abnormalities in Tumor Necrosis Factor-??-Induced Heart Failure Are Associated With Impaired DNA Repair Activity, Circulation, vol.104, issue.20, pp.2492-2497, 2001.
DOI : 10.1161/hc4501.098944

URL : http://circ.ahajournals.org/content/circulationaha/104/20/2492.full.pdf

M. Hamblin, L. Chang, Y. Fan, J. Zhang, and Y. Chen, PPARs and the Cardiovascular System, Antioxidants & Redox Signaling, vol.11, issue.6, pp.1415-1452, 2009.
DOI : 10.1089/ars.2008.2280

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737093/pdf

S. Gielen, G. Schuler, and A. V. , Cardiovascular Effects of Exercise Training: Molecular Mechanisms, Circulation, vol.122, issue.12, pp.1221-1238, 2010.
DOI : 10.1161/CIRCULATIONAHA.110.939959

T. Holloway, D. Bloemberg, M. Da-silva, J. Simpson, J. Quadrilatero et al., High Intensity Interval and Endurance Training Have Opposing Effects on Markers of Heart Failure and Cardiac Remodeling in Hypertensive Rats, PLOS ONE, vol.2013, issue.20, p.121138, 2015.
DOI : 10.1371/journal.pone.0121138.t002

S. Puhl, A. Müller, M. Wagner, Y. Devaux, M. Böhm et al., Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice, American Journal of Physiology - Heart and Circulatory Physiology, vol.309, issue.2, pp.345-359, 2015.
DOI : 10.1152/ajpheart.00683.2014

URL : http://ajpheart.physiology.org/content/ajpheart/309/2/H345.full.pdf

. Wisløff-u, J. Loennechen, G. Falck, . Beisvag-v, S. Currie et al., Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats, Cardiovascular Research, vol.50, issue.3, pp.495-508, 2001.
DOI : 10.1016/S0008-6363(01)00210-3

J. Burniston, Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise, PROTEOMICS, vol.24, issue.1, pp.106-115, 2009.
DOI : 10.1161/01.CIR.103.22.2731

. Rafalski-k, A. Abdourahman, and J. Edwards, Early Adaptations to Training, Medicine & Science in Sports & Exercise, vol.39, issue.1, pp.75-82, 2007.
DOI : 10.1249/01.mss.0000240324.08406.3d

C. Alves, T. Da-cunha, N. Da-paixão, and P. Brum, Aerobic exercise training as therapy for cardiac and cancer cachexia, Life Sciences, vol.125, pp.9-14, 2015.
DOI : 10.1016/j.lfs.2014.11.029

J. Gueritat, L. Lefeuvre-orfila, S. Vincent, A. Cretual, J. Ravanat et al., Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation, Free Radical Biology and Medicine, vol.77, pp.95-105, 2014.
DOI : 10.1016/j.freeradbiomed.2014.09.009

J. Goh, J. Tsai, B. Tk, F. Farin, E. Endicott et al., Exercise Training in Transgenic Mice Is Associated with Attenuation of Early Breast Cancer Growth in a Dose-Dependent Manner, PLoS ONE, vol.108, issue.11, p.80123, 2013.
DOI : 10.1371/journal.pone.0080123.g005

P. Deuster, S. Morrison, and R. Ahrens, Endurance exercise modifies cachexia of tumor growth in rats, Medicine & Science in Sports & Exercise, vol.17, issue.3, pp.385-392, 1985.
DOI : 10.1249/00005768-198506000-00015

G. Mcginnis, C. Ballmann, B. Peters, G. Nanayakkara, M. Roberts et al., Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury, American Journal of Physiology - Heart and Circulatory Physiology, vol.308, issue.11, pp.1423-1433, 2015.
DOI : 10.1152/ajpheart.00850.2014

A. Petersen and B. Pedersen, The anti-inflammatory effect of exercise, Journal of Applied Physiology, vol.98, issue.4, pp.1154-1162, 1985.
DOI : 10.1152/japplphysiol.00164.2004

J. Rodriguez, R. Fernández-verdejo, N. Pierre, F. Priem, and M. Francaux, Endurance Training Attenuates Catabolic Signals Induced by TNF-?? in Muscle of Mice, Medicine & Science in Sports & Exercise, vol.48, issue.2, pp.227-234, 2016.
DOI : 10.1249/MSS.0000000000000756

E. Gomes, A. Silva, and M. De-oliveira, Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species, Oxidative Medicine and Cellular Longevity, vol.26, issue.5, p.756132, 2012.
DOI : 10.1152/japplphysiol.01202.2006

A. Rebillard, L. Lefeuvre-orfila, J. Gueritat, and J. Cillard, Prostate cancer and physical activity: Adaptive response to oxidative stress, Free Radical Biology and Medicine, vol.60, pp.115-124, 2013.
DOI : 10.1016/j.freeradbiomed.2013.02.009

URL : https://hal.archives-ouvertes.fr/hal-01159383

A. Chicco, C. Schneider, and R. Hayward, Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.2, pp.424-431, 2005.
DOI : 10.1152/ajpregu.00636.2004

P. Sk, A. Morton, B. Ahn, and A. Smuder, Redox control of skeletal muscle atrophy, Free Radic Biol Med, vol.98, pp.208-217, 2016.

G. Ellison, C. Waring, C. Vicinanza, and D. Torella, Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms, Heart, vol.98, issue.1, pp.5-10, 2012.
DOI : 10.1136/heartjnl-2011-300639

C. Constantinou, F. De-oliveira, C. Mintzopoulos, D. Busquets, S. He et al., Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia, Int J Mol Med, vol.27, pp.15-24, 2011.

. Coffey-vg and J. Hawley, The Molecular Bases of Training Adaptation, Sports Medicine, vol.10, issue.6, pp.737-763, 2007.
DOI : 10.1152/ajpendo.00107.2003

R. Scarpulla, Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells, Gene, vol.286, issue.1, pp.81-89, 2002.
DOI : 10.1016/S0378-1119(01)00809-5

M. Iemitsu, T. Miyauchi, S. Maeda, T. Tanabe, M. Takanashi et al., Aging-induced decrease in the PPAR-?? level in hearts is improved by exercise training, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.5, pp.1750-1760, 2002.
DOI : 10.1152/ajpheart.01051.2001

D. Coven, X. Hu, L. Cong, R. Bergeron, G. Shulman et al., Physiological role of AMP-activated protein kinase in the heart: Graded activation during exercise 104. kraniou GN, Cameron-Smith D and Hargreaves M: Acute exercise and GLuT4 expression in human skeletal muscle: Influence of exercise intensity, Am J Physiol Endocrinol Metab J Appl Physiol, vol.285, issue.101, pp.629-636, 1985.

B. Debosch, I. Treskov, T. Lupu, C. Weinheimer, A. Kovacs et al., Akt1 Is Required for Physiological Cardiac Growth, Circulation, vol.113, issue.17, pp.2097-2104, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.595231

J. Mcmullen, ROLE OF INSULIN-LIKE GROWTH FACTOR 1 AND PHOSPHOINOSITIDE 3-KINASE IN A SETTING OF HEART DISEASE, Clinical and Experimental Pharmacology and Physiology, vol.6, issue.3, pp.349-354, 2008.
DOI : 10.4161/cc.6.8.4124

J. Mcmullen, F. Amirahmadi, E. Woodcock, M. Schinke-braun, R. Bouwman et al., Protective effects of exercise and phosphoinositide 3-kinase(p110??) signaling in dilated and hypertrophic cardiomyopathy, Proceedings of the National Academy of Sciences, vol.420, issue.6916, pp.612-617, 2007.
DOI : 10.1038/nature01306

M. Santini, L. Tsao, L. Monassier, C. Theodoropoulos, J. Carter et al., Enhancing Repair of the Mammalian Heart, Circulation Research, vol.100, issue.12, pp.1732-1740, 2007.
DOI : 10.1161/CIRCRESAHA.107.148791