D. Alessi, M. Andjelkovic, B. Caudwell, P. Cron, N. Morrice et al., Mechanism of activation of protein kinase B by insulin and IGF-1, EMBO J, vol.15, pp.6541-6551, 1996.

L. Baehr, J. Furlow, and S. Bodine, Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids, The Journal of Physiology, vol.12, issue.19, pp.4759-4776, 2011.
DOI : 10.1038/ncb2069

L. Beretta, A. Gingras, Y. Svitkin, M. Hall, and N. Sonenberg, Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation, EMBO J, vol.15, pp.658-664, 1996.

B. Blondet, G. Carpentier, A. Ferry, and J. Courty, Exogenous Pleiotrophin Applied to Lesioned Nerve Impairs Muscle Reinnervation, Neurochemical Research, vol.197, issue.Pt 4, pp.907-913, 2006.
DOI : 10.1007/s11064-006-9095-x

URL : https://hal.archives-ouvertes.fr/hal-00109603

A. Brafman, I. Mett, M. Shafir, H. Gottlieb, G. Damari et al., Inhibition of Oxygen-Induced Retinopathy in RTP801-Deficient Mice, Investigative Opthalmology & Visual Science, vol.45, issue.10, pp.3796-3805, 2004.
DOI : 10.1167/iovs.04-0052

M. Brooke and K. Kaiser, THREE "MYOSIN ADENOSINE TRIPHOSPHATASE" SYSTEMS: THE NATURE OF THEIR pH LABILITY AND SULFHYDRYL DEPENDENCE, Journal of Histochemistry & Cytochemistry, vol.18, issue.9, pp.670-672, 1970.
DOI : 10.1177/18.9.670

E. Brown, P. Beal, C. Keith, J. Chen, T. Shin et al., Control of p70 S6 kinase by kinase activity of FRAP in vivo, Nature, vol.377, issue.6548, pp.441-446, 1995.
DOI : 10.1038/377441a0

J. Brugarolas, K. Lei, R. Hurley, B. Manning, J. Reiling et al., Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes & Development, vol.18, issue.23, pp.2893-2904, 2004.
DOI : 10.1101/gad.1256804

S. Cai, A. Tee, J. Short, J. Bergeron, J. Kim et al., Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning, The Journal of Cell Biology, vol.58, issue.2, pp.279-289, 2006.
DOI : 10.1038/ncb999

T. Chaillou, N. Koulmann, N. Simler, A. Meunier, B. Serrurier et al., Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.62, issue.5, pp.643-654, 2012.
DOI : 10.1038/cdd.2009.16

D. Chen, X. Chen, M. Li, H. Zhang, W. Ding et al., CCCP-Induced LC3 lipidation depends on Atg9 whereas FIP200/Atg13 and Beclin 1/Atg14 are dispensable, Biochemical and Biophysical Research Communications, vol.432, issue.2, pp.226-230, 2013.
DOI : 10.1016/j.bbrc.2013.02.010

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595373/pdf

L. Combaret, D. Taillandier, D. Dardevet, D. Bechet, C. Ralliere et al., Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles, Biochemical Journal, vol.378, issue.1, pp.239-246, 2004.
DOI : 10.1042/bj20031660

M. Dennis, C. Coleman, A. Berg, L. Jefferson, and S. Kimball, REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling, Science Signaling, vol.24, issue.18, p.68, 2014.
DOI : 10.1128/MCB.24.18.7965-7975.2004

M. Deyoung, P. Horak, A. Sofer, D. Sgroi, and L. Ellisen, Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling, Genes & Development, vol.22, issue.2, pp.239-251, 2008.
DOI : 10.1101/gad.1617608

L. Ellisen, K. Ramsayer, C. Johannessen, A. Yang, H. Beppu et al., REDD1, a Developmentally Regulated Transcriptional Target of p63 and p53, Links p63 to Regulation of Reactive Oxygen Species, Molecular Cell, vol.10, issue.5, pp.995-1005, 2002.
DOI : 10.1016/S1097-2765(02)00706-2

F. Favier, F. Costes, A. Defour, R. Bonnefoy, E. Lefai et al., Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.2, issue.6, pp.1659-1666, 2010.
DOI : 10.1074/jbc.M610023200

URL : https://hal.archives-ouvertes.fr/inserm-00593929

I. Ganley, H. Lam-du, J. Wang, X. Ding, S. Chen et al., ULK1??ATG13??FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy, Journal of Biological Chemistry, vol.3, issue.18, pp.12297-12305, 2009.
DOI : 10.1016/j.cellsig.2007.10.021

URL : http://www.jbc.org/content/284/18/12297.full.pdf

H. Gilson, O. Schakman, L. Combaret, P. Lause, L. Grobet et al., Myostatin Gene Deletion Prevents Glucocorticoid-Induced Muscle Atrophy, Endocrinology, vol.148, issue.1, pp.452-460, 2007.
DOI : 10.1210/en.2006-0539

URL : https://academic.oup.com/endo/article-pdf/148/1/452/9036173/endo0452.pdf

A. Goldberg, M. Tischler, G. Demartino, and G. Griffin, Hormonal regulation of protein degradation and synthesis in skeletal muscle, Fed Proc, vol.39, pp.31-36, 1980.

Z. Hu, H. Wang, I. Lee, J. Du, and W. Mitch, Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice, Journal of Clinical Investigation, vol.119, pp.3059-3069, 2009.
DOI : 10.1172/JCI38770DS1

URL : http://www.jci.org/articles/view/38770/files/pdf

C. Jung, C. Jun, S. Ro, Y. Kim, N. Otto et al., ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery, Molecular Biology of the Cell, vol.20, issue.7, 1992.
DOI : 10.1091/mbc.E08-12-1249

A. Kelleher, S. Kimball, M. Dennis, R. Schilder, and L. Jefferson, The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb, American Journal of Physiology-Endocrinology and Metabolism, vol.299, issue.2, pp.229-236, 2013.
DOI : 10.1139/H10-022

K. Kovacina, G. Park, S. Bae, A. Guzzetta, E. Schaefer et al., Identification of a Proline-rich Akt Substrate as a 14-3-3 Binding Partner, Journal of Biological Chemistry, vol.269, issue.12, pp.10189-10194, 2003.
DOI : 10.1042/BJ20020838

R. Kumari, L. Willing, L. Jefferson, I. Simpson, and S. Kimball, REDD1 (regulated in development and DNA damage response 1) expression in skeletal muscle as a surrogate biomarker of the efficiency of glucocorticoid receptor blockade, Biochemical and Biophysical Research Communications, vol.412, issue.4, pp.644-647, 2011.
DOI : 10.1016/j.bbrc.2011.08.017

K. Lew, E. Ludwig, M. Milad, K. Donovan, E. Middleton et al., Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics, Clinical Pharmacology and Therapeutics, vol.54, issue.4, pp.402-414, 1993.
DOI : 10.1038/clpt.1993.167

URL : http://europepmc.org/articles/pmc4207261?pdf=render

E. Masschelein, R. Van-thienen, D. Hulst, G. Hespel, P. Thomis et al., Acute environmental hypoxia induces LC3 lipidation in a genotype-dependent manner, The FASEB Journal, vol.136, issue.4, pp.1022-1034, 2014.
DOI : 10.1089/ten.tea.2010.0624

R. May, R. Kelly, and W. Mitch, Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism., Journal of Clinical Investigation, vol.77, issue.2, pp.614-621, 1986.
DOI : 10.1172/JCI112344

N. Mcghee, L. Jefferson, and S. Kimball, Elevated Corticosterone Associated with Food Deprivation Upregulates Expression in Rat Skeletal Muscle of the mTORC1 Repressor, REDD11, The Journal of Nutrition, vol.139, issue.5, pp.828-834, 2009.
DOI : 10.3945/jn.108.099846

J. Molitoris, K. Mccoll, S. Swerdlow, M. Matsuyama, M. Lam et al., Glucocorticoid Elevation of Dexamethasone-induced Gene 2 (Dig2/RTP801/REDD1) Protein Mediates Autophagy in Lymphocytes, Journal of Biological Chemistry, vol.3, issue.34, pp.30181-30189, 2011.
DOI : 10.4161/auto.4600

R. Mostert, A. Goris, C. Weling-scheepers, E. Wouters, and A. Schols, Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease, Respiratory Medicine, vol.94, issue.9, pp.859-867, 2000.
DOI : 10.1053/rmed.2000.0829

P. Painter, K. Topp, J. Krasnoff, D. Adey, A. Strasner et al., Health-related fitness and quality of life following steroid withdrawal in renal transplant recipients, Kidney International, vol.63, issue.6, pp.2309-2316, 2003.
DOI : 10.1046/j.1523-1755.2003.00038.x

L. Pessemesse, A. Schlernitzauer, C. Sar, J. Levin, S. Grandemange et al., Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity, The FASEB Journal, vol.278, issue.2, pp.748-756, 2012.
DOI : 10.1152/ajpregu.2000.278.6.R1545

URL : https://hal.archives-ouvertes.fr/hal-00746541

V. Proserpio, R. Fittipaldi, J. Ryall, V. Sartorelli, and G. Caretti, The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy, Genes & Development, vol.27, issue.11, pp.1299-1312, 2013.
DOI : 10.1101/gad.217240.113

S. Rannels, D. Rannels, A. Pegg, and L. Jefferson, Glucocorticoid effects on peptide-chain initiation in skeletal muscle and heart., American Journal of Physiology-Endocrinology and Metabolism, vol.235, issue.2, pp.134-139, 1978.
DOI : 10.1146/annurev.bi.45.070176.001203

J. Reiling and E. Hafen, The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila, Genes & Development, vol.18, issue.23, pp.2879-2892, 2004.
DOI : 10.1101/gad.322704

R. Russell, Y. Tian, H. Yuan, H. Park, Y. Chang et al., ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, pp.741-750, 2013.
DOI : 10.1111/j.1365-2443.2008.01188.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885611/pdf

Y. Sancak, C. Thoreen, T. Peterson, R. Lindquist, S. Kang et al., PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase, Molecular Cell, vol.25, issue.6, pp.903-915, 2007.
DOI : 10.1016/j.molcel.2007.03.003

R. Schein, C. Sprung, E. Marcial, L. Napolitano, and B. Chernow, Plasma cortisol levels in patients with septic shock, Critical Care Medicine, vol.18, issue.3, pp.259-263, 1990.
DOI : 10.1097/00003246-199003000-00002

N. Shimizu, N. Yoshikawa, N. Ito, T. Maruyama, Y. Suzuki et al., Crosstalk between Glucocorticoid Receptor and Nutritional Sensor mTOR in Skeletal Muscle, Cell Metabolism, vol.13, issue.2, pp.170-182, 2011.
DOI : 10.1016/j.cmet.2011.01.001

T. Shoshani, A. Faerman, I. Mett, E. Zelin, T. Tenne et al., Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis, Molecular and Cellular Biology, vol.22, issue.7, pp.2283-2293, 1993.
DOI : 10.1128/MCB.22.7.2283-2293.2002

A. Sofer, K. Lei, C. Johannessen, and L. Ellisen, Regulation of mTOR and Cell Growth in Response to Energy Stress by REDD1, Molecular and Cellular Biology, vol.25, issue.14, pp.5834-5845, 2005.
DOI : 10.1128/MCB.25.14.5834-5845.2005

M. Tischler, M. Desautels, and A. Goldberg, Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle?, J Biol Chem, vol.257, pp.1613-1621, 1982.

C. Touma, R. Palme, and N. Sachser, Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones, Hormones and Behavior, vol.45, issue.1, pp.10-22, 2004.
DOI : 10.1016/j.yhbeh.2003.07.002

F. Tremblay and A. Marette, Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells, J Biol Chem, vol.276, pp.38052-38060, 2001.

V. Haar, E. Lee, S. Bandhakavi, S. Griffin, T. Kim et al., Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40, Nature Cell Biology, vol.126, issue.3, pp.316-323, 2007.
DOI : 10.1523/JNEUROSCI.5209-03.2004

D. Waddell, L. Baehr, J. Van-den-brandt, S. Johnsen, H. Reichardt et al., The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene, American Journal of Physiology-Endocrinology and Metabolism, vol.295, issue.4, pp.785-797, 2008.
DOI : 10.1042/bj20031450

H. Wang, N. Kubica, L. Ellisen, L. Jefferson, and S. Kimball, Dexamethasone Represses Signaling through the Mammalian Target of Rapamycin in Muscle Cells by Enhancing Expression of REDD1, Journal of Biological Chemistry, vol.25, issue.51, pp.39128-39134, 2006.
DOI : 10.1074/jbc.C500169200

M. Whitney, L. Jefferson, and S. Kimball, ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression, Biochemical and Biophysical Research Communications, vol.379, issue.2, pp.451-455, 2009.
DOI : 10.1016/j.bbrc.2008.12.079

D. Williamson, Z. Li, R. Tuder, E. Feinstein, S. Kimball et al., Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency, Journal of Applied Physiology, vol.272, issue.3, pp.246-256, 1985.
DOI : 10.1111/dme.12184

Y. Wu, W. Zhao, J. Zhao, Y. Zhang, W. Qin et al., REDD1 Is a Major Target of Testosterone Action in Preventing Dexamethasone-Induced Muscle Loss, Endocrinology, vol.151, issue.3, pp.1050-1059, 2010.
DOI : 10.1210/en.2009-0530

J. Zhou, S. Tan, P. Codogno, and H. Shen, Dual suppressive effect of MTORC1 on autophagy, Autophagy, vol.9, issue.5, pp.803-805, 2013.
DOI : 10.4161/auto.23965