REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy

Florian Britto, Gwenaelle Begue, Bernadette Rossano, Aurélie Docquier, Barbara Vernus, Chamroeun Sar, Arnaud Ferry, Anne Bonnieu, Vincent Ollendorff, François Favier

To cite this version:

Florian Britto, Gwenaelle Begue, Bernadette Rossano, Aurélie Docquier, Barbara Vernus, et al.. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. AJP - Endocrinology and Metabolism, American Physiological Society, 2014, 307 (11), pp.E983-E993. 10.1152/ajpendo.00234.2014. hal-01635920

HAL Id: hal-01635920
https://hal.umontpellier.fr/hal-01635920
Submitted on 5 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RED1 deletion prevents dexamethasone-induced skeletal muscle atrophy

Florian A. Britto, 1,2,3 Gwenaelle Begue, 1,2,3 Bernadette Rossano, 1,2,3 Aurélié Docquier, 1,2,3 Barbara Vernus, 1,2,3 Chamroeun Sar, 4 Arnaud Ferry, 5,6 Anne Bonnrieu, 1,2,3 Vincent Ollandroff, 1,2,3 and François B. Favier 1,2,3

1Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; 2Université Montpellier 1, F-34000 Montpellier, France; 3Université Montpellier 2, F-34000 Montpellier, France; 4Institut National de la Sante et de la Recherche Medicale (INSERM) U 583, Institut de Neurosciences de Montpellier, France; 5Institut de Myologie, INSERM, U974, Centre National de la Recherche Scientifique UMR 7215, Université Pierre et Marie Curie, Paris, France; and 6Université Paris Descartes, Sorbonne Paris Cité, Paris, France

Submitted 19 May 2014; accepted in final form 16 September 2014

Britto FA, Begue G, Rossano B, Docquier A, Vernus B, Sar C, Ferry A, Bonnrieu A, Ollandroff V, Favier FB. RED1 deletion prevents dexamethasone-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab 307: E983–E993, 2014. First published October 14, 2014; doi:10.1152/ajpendo.00234.2014.—RED1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. RED1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, RED1 function seems to be tissue and stress dependent, and its role in skeletal muscle in vivo has been poorly characterized. Here, we investigated the effect of RED1 deletion on skeletal muscle mass, protein synthesis, proteolysis, and mTORC1 signaling pathway under basal conditions and after glucocorticoid administration. Whereas skeletal muscle mass and typology were unchanged between wild-type (WT) and RED1-null mice, oral gavage with dexamethasone (DEX) for 7 days reduced tibialis anterior and gastrocnemius muscle weights as well as tibialis anterior fiber size only in WT. Similarly, RED1 deletion prevented the inhibition of protein synthesis and mTORC1 activity (assessed by S6, 4E-BP1, and ULK1 phosphorylation) observed in gastrocnemius muscle of WT mice following single DEX administration for 5 h. However, our results suggest that RED1-mediated inhibition of mTORC1 in skeletal muscle is not related to the modulation of the binding between TSC2 and 14-3-3. In contrast, our data highlight a new mechanism involved in mTORC1 inhibition linking RED1, Akt, and PRAS40. Altogether, these results demonstrated in vivo that RED1 is required for glucocorticoid-induced inhibition of protein synthesis via mTORC1 downregulation. Inhibition of RED1 may thus be a strategy to limit muscle loss in glucocorticoid-mediated atrophy.

regulated in development and DNA damage response 1; protein synthesis; mechanistic target of rapamycin; autophagy; glucocorticoids; proline-rich Akt substrate of 40 kDa endogenous as well as exogenous GCs have been shown to strongly induce regulated in development and DNA damage 1 (RED1) expression in skeletal muscle (24, 39, 48). RED1 is a recently identified protein (15, 40) with a low level of expression under basal conditions. In addition to elevated GC conditions, RED1 expression is greatly enhanced in several catabolic stresses, such as hypoxia (16). DNA damage (15), energetic stress (42), limb immobilization (22), and unfolding protein response (49). RED1 has been shown to contribute to apoptosis, oxidative stress, and mechanistic target of rapamycin complex 1 (mTORC1) regulation (14). mTORC1 is a multiproteic complex controlling mRNA translation through formation of the translation initiation complex eIF4F (3) and activation of the ribosomal protein S6 (7). mTORC1 activation is regulated by Akt via phosphorylation of the mTORC1 inhibitors tuberous sclerosis complex 2 (TSC2) and proline-rich Akt substrate of 40 kDa (PRAS40), leading to their sequestration by 14-3-3 proteins (9, 23, 37). Akt needs itself to be phosphorylated on two residues (Ser473 and Thr308) to become fully activated (1). Importantly, RED1 has been proposed to induce mTORC1 inhibition during hypoxia by releasing TSC2 from 14-3-3 in cell culture (14). In contrast, a recent study showed that RED1-mediated inhibition of mTORC1 is not related to TSC2/14-3-3 dissociation but is associated with Akt Thr308 phosphorylation in human embryonic kidney (HEK)-293 cells (13). In addition to protein synthesis, mTORC1 also triggers proteolysis via autophagy (ATG) inhibition through phosphorylation of the ATG-initiating protein ULK1 (17, 21). It has been shown that ULK1 promotes autophagic induction via beclin-1 phosphorylation (36) and activation of the autophagosomal elongation factor LC3. Indeed, ULK1 complex inhibition partially represses the activation of LC3 following carbonyl cyanide m-chlorophenylhydrazine treatment (11). Interestingly, Molitoris et al. (29) showed that RED1 promoted LC3 activation and autophagosome formation in lymphocytes following administration of the synthetic GC dexamethasone (DEX). However, this mechanism needs to be confirmed in skeletal muscle since RED1 function seems to be tissue dependent (40).

Although several studies have reported mTORC1 inhibition concomitantly with an increase in RED1 expression (8, 16, 42, 48), the in vivo mechanism of RED1-dependent mTORC1 inhibition is poorly described. In addition, it remains to be tested whether RED1 is responsible for an alteration of the protein synthesis/degradation balance and a reduction in skeletal muscle mass in stress conditions. Moreover, it is not known whether RED1 deletion affects muscle function and
were given 200 g·kg⁻¹·day⁻¹ water-soluble DEX (D2915; Sigma-Aldrich, St. Louis, MO) or tap water (CTRL) by oral gavage. Animals were euthanized by cervical dislocation and the tissues removed in the end of the treatment period, the tibialis anterior (TA) and gastrocnemius (GAS) muscles were excised bilaterally, weighed, frozen in liquid nitrogen, and stored at 80°C for further analysis. The spleen was also removed and weighed.

**Study 2: DEX-induced molecular mechanisms.** WT and KO mice were treated with 1 mg/kg DEX or tap water (CTRL) by oral gavage. Animals were euthanized 5 h after gavage, and both TA and left GAS were quickly frozen in liquid nitrogen and stored at 80°C for further analysis. Right GAS was used immediately for determination of protein synthesis and proteolysis (see below).

**Immunohistochemistry**

Cross sections (10 µm) were cut from TA using cryostat microtome at 20°C. Sections were stained with azurine (1%) and automatically analyzed for fiber cross-sectional area quantification, as described previously (32). Briefly, sections were scanned using a NanoZoomer (Hamamatsu Photonics, Hamamatsu City, Japan) with a 20 objective, and fiber cross-sectional area was measured with Definiens Developer 7.1 software (Definiens, Munich, Germany). At least 1,700 fibers per muscle were counted.

Muscle typology was determined by the Kaiser and Brooke (6) myosin-ATPase coloration method on sections of the triceps and surae, i.e., GAS and soleus (SOL) muscles. Myofibers from each muscle were identified as being type I, type IIA–IIX, or type IIB fibers.

**Muscle Contractile Properties**

Gastrocnemius and soleus muscles were evaluated by the measurement of in situ isometric muscle contraction in response to nerve stimulation, as described previously (4). Mice were anesthetized using a pentobarbital solution (60 mg/kg ip), and supplemental doses were given as required to maintain deep anesthesia during experiments.

Feet were fixed with clamps to a platform, and knees were immobilized using stainless-steel pins. The distal tendons of muscles were attached to an isometric transducer (Harvard Bioscience) using a silk ligature. The sciatic nerves were proximally crushed and distally stimulated by bipolar silver electrode using supramaximal square-wave pulses of 0.1-ms duration. All isometric measurements were made at an initial length of L₀ (length at which maximal tension was obtained during the tetanus). Responses to tetanic stimulation (pulse frequency from 50, 100, and 143 Hz) were successively recorded. Maximal tetanic force was determined. Finally, the fatigue resistance was assessed. The fatigue protocol consisted of repeated contractions (100 Hz for 500 ms, evoked once every 2 s) until the muscle lost 30% of its initial force. The fatigability was defined by the time necessary to lose 30% of the initial force. After contractile measurements, mice were euthanized by cervical dislocation.

**Protein Synthesis and Proteolysis Measurements**

GAS was removed for measurement of protein metabolism, as described previously (41). Briefly, muscles were preincubated for 15 min in Krebs-Henseleit buffer and then transferred to fresh medium of the same composition containing 0.1% bovine serum albumin (99% fatty acid free) and 0.5 mmol/l L-[U-¹⁴C]phenylalanine (5.55 KBq/l) for 1 h. We verified that these experimental conditions were not associated with major signs of muscle hypoxia (assessed by VEGFa and REDD1 mRNA expression; data not shown). At the end of the incubation period, muscles were weighed and homogenized in 10% trichloroacetic acid (TCA). Homogenates were centrifuged at 10,000 g for 10 min at 4°C, and TCA-insoluble material (which represented the protein fraction) was washed three times with 10% TCA to eliminate free radioactivity. The resultant pellet was solubilized in 1 ml/l NaOH at 37°C for determination of radioactivity incorporated into muscle protein fraction. Protein-bound radioactivity was measured using liquid scintillation counting. Protein synthesis was calculated by dividing the protein-bound radioactivity by the specific activity of the phenylalanine in the incubation medium; it was expressed as nanomoles of phenylalanine incorporated per gram of muscle per hour.

Proteolysis was measured by tyrosine release in the same setup as above. Because tyrosine is neither synthesized nor degraded in muscle, the release of tyrosine into the incubation medium directly reflects net protein breakdown. Proteolysis was then estimated by the sum of net tyrosine release into the incubation medium and protein synthesis after conversion of the rate of phenylalanine incorporation into proteins into tyrosine equivalents (43). Protein degradation was expressed in nanomoles of tyrosine incorporation per gram of muscle per hour.

**Western Blotting**

Frozen GAS muscles were powdered, homogenized in lysis buffer (50 mM Tris-HCl, 100 mM NaCl, 5% glycerol, 1 mM EDTA, 1 mM EGTA, 50 mM·K-glycerophosphate, 50 mM NaF, 1 mM Na₃VO₄, 1% Triton X-100, and protease inhibitor cocktail) with Fastprep-24 (MP Biomedical, Santa Ana, CA), and centrifuged at 10,000 g for 10 min (4°C). Protein concentrations were determined from the supernatant using the BCA assay (Interchim, Montluçon, France). Fifty micrograms of protein were subjected to SDS-PAGE on acrylamide 4–20% precast gels (Bio-Rad, Hercules, CA) and transferred to nitrocellulose membrane. Membranes were blocked in 5% nonfat dry milk in Tris-buffered saline for 1 h and then probed with primary antibody overnight at 4°C. Akt, phospho-Akt Ser⁴⁷³, phospho-Akt Thr³⁸², S6, phospho-S6 Ser²₃₅²₃₇, eIF4E-binding protein-1 (4E-BP1), phospho-4E-BP1 Thr⁷⁰⁹, PRAS40, phospho-PRAS40 Thr²⁴⁴/p62 (all from Cell Signaling Technology, Danvers, MA), LC3 (Sigma-Aldrich, St. Louis, MO), and REDD1 (Proteintech, Chicago, IL) were used at a concentration of 1:1,000, α-tubulin (Sigma-Aldrich) and 14-3-3β (SC-1657; Santa Cruz Biotechnology, Dallas, TX) were used at 1:2,000, and ubiquitin (SC-8017; Santa Cruz Biotechnology), TSC2,
phospho-TSC2 Ser1839, ULK1, and phospho-ULK1 Ser757 (Cell Signaling Technology) were used at 1:500. The next day, membranes were washed and incubated with horseradish peroxidase-conjugated secondary antibody at 1:3,000 for 1 h at room temperature. Chemiluminescent horseradish peroxidase substrate (Pierce, Rockford, IL) was then added to the membranes and exposed in a photograph developer.

**Immunoprecipitation**

Frozen GAS muscles were homogenized in CHAPS lysis buffer (0.3%; CHAPS, 40 mM HEPES, pH 7.5, 120 mM NaCl, 1 mM EDTA, 50 mM NaF, 1.5 mM Na3VO4, 10 mM 1,2-glycerophosphate, and protease inhibitor cocktail) and centrifuged at 10,000 g (4°C) for 10 min. Five-hundred micrograms of protein from supernatant was diluted in a final volume of 500 l with the CHAPS buffer. Preclarified lysates were incubated with either 5 g of anti-pan-14-3-3 (MA5–12242; Pierce/Thermo Scientific, Rockford, IL) or 5 g of anti-mouse IgG (IgG1 Isotype control; Cell Signaling Technology) overnight at 4°C. Samples were then incubated for 1 h at 4°C with 100 l of 20% protein G sepharose beads (GE Healthcare, Waukesha, WI) and washed four times with CHAPS buffer before analysis by Western blot.

**mRNA Expression Analysis**

Total RNA was extracted from the TA muscle using the RNeasy fibrous tissue kit (Qiagen, Venlo, The Netherlands). cDNA was then synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystem) from 1 g of total mRNA. Purification of cDNA was performed using a PCR cleanup kit (Promega, Madison, WI). Quantitative PCR was performed using KAPA 2 SYBR Green Master Mix on an MiniOpticon thermocycler (Bio-Rad). Cycling conditions were one cycle at 98°C for 30 s followed by 40 cycles at 95°C for 1 s and 60°C for 15 s (64°C for BNIP3). Fusion index was measured by increments of 0.5°C every 5 s (starting at 65°C, finishing at 95°C). Each sample was run in duplicate. Sequences of the mouse forward and reverse primers are listed in Table 1. Results were expressed using the comparative cycle threshold (C –) with -tubulin as the control gene because its expression remained unchanged across groups. The calculation of the relative changes in the expression level of one specific gene was performed by the formula. We also took into account the PCR efficiency of primers in the following formula:

\[
\Delta \Delta C_T \text{ formula.}
\]

**Table 1. Primers used for real-time quantitative PCR**

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer (5' –3')</th>
<th>Reverse Primer (5' –3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDD1</td>
<td>CCAGAAGAAGGGGCTTGA</td>
<td>CCATCCAGGTATGAGGAGTCTT</td>
</tr>
<tr>
<td>REDD2</td>
<td>GACCAAGATCCTTGTGACTA</td>
<td>AAGGCGTACCCATGGAGAAGC</td>
</tr>
<tr>
<td>MyHC1</td>
<td>ATAGCAAGAAGGGGCTCT</td>
<td>GGCTCCTGACGGCTCAGTCC</td>
</tr>
<tr>
<td>MyHCII</td>
<td>AGGCGGAAAGAAGCAGCTCAT</td>
<td>GGTGGAGCGAGAGCCAGGAG</td>
</tr>
<tr>
<td>MyHCIX</td>
<td>CAGTCCCAAAGGCAAGAGG</td>
<td>CGTGGACAGCTTGGTGGAGA</td>
</tr>
<tr>
<td>MyHcIIB</td>
<td>GTGCAGAAGCTTGGTGGACA</td>
<td>CTTGACCAAGGTGATGAGC</td>
</tr>
<tr>
<td>FOXO1</td>
<td>GCTGGGCTGACGGCTAAGAG</td>
<td>AGGGGATCCTTGAGAGTGCT</td>
</tr>
<tr>
<td>Foxo3a</td>
<td>GGAAATGCGAGCCAGCAGA</td>
<td>AAACAGGATCCTGTGCAAGT</td>
</tr>
<tr>
<td>MAFbx</td>
<td>AGTGAGGACCGCTACTGTG</td>
<td>GATCAAAGCGTTGAAGTCT</td>
</tr>
<tr>
<td>MuRF1</td>
<td>TCTGCAAGATGGAGCAGAAG</td>
<td>GCCGATACGAGGGGCTCAAG</td>
</tr>
<tr>
<td>BNIP3</td>
<td>CCGTGCAGAGTGGGTCTCAG</td>
<td>GAAGTGACAGTGGTCAAGAC</td>
</tr>
<tr>
<td>LC3I</td>
<td>AGCTTTCTGAAAGGGTGAAG</td>
<td>CTCCTTCTGTATGTGCCTAT</td>
</tr>
<tr>
<td>LAMP2a</td>
<td>GTGACAAAAAGAGCAGATGCTACG</td>
<td>CCAATAAGATTAGGCAAGA</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>ACAAGAAAGCTGATGGCAGGAA</td>
<td>GATCATCCTGATGTGCTCC</td>
</tr>
<tr>
<td>GR</td>
<td>CAAAGATGCGAGGTATCATGAA</td>
<td>TGGCTTCTGACAGCTTCTT</td>
</tr>
<tr>
<td>-tubulin</td>
<td>CTGGAGAACCCAGGGTTATC</td>
<td>GGTCAGACGAGTTAAGTT</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REDD, regulated in development and DNA damage response; MyHC, myosin heavy chain; MAFbx, muscle atrophy F-box; MuRF1, muscle RING finger 1; GR, glucocorticoid receptor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fecal Corticosterone Metabolites**

Corticosterone levels were assayed at base level from feces according to Touma et al. (44). Briefly, all feces produced during a period over 24 h were collected, dried for 1 h at 37°C, and homogenized in 80% ethanol (wt/vol 1:10). Supernatant was diluted 1:2 with kit assay buffer and stored at 20°C. Corticosterone concentration was determined by using the Correlate EIA Kit (Assay Designs, Ann Arbor, MI) according to the manufacturer’s instructions. Values were expressed based on the total feces collected over a time period and as nanograms of corticosterone per gram of feces. The assay kit has 28.6% cross-reactivity with deoxycorticosterone, a metabolite of corticosterone. Therefore, the values measured represent largely corticosterone and these metabolites.

**Statistical Analysis**

Results are presented as means SE. Data were analyzed by Student’s t-test (absolute maximal force and fatigue resistance (Fig. 1E), glucocorticoid receptor (GR) expression and corticosterone levels (Fig. 2C), and muscle weight (Fig. 3A)) and one- (REDD1 mRNA levels within the different muscles; Fig. 1A) or two-way ANOVA (with genotype and DEX treatment as the 2 factors). Fisher’s least significant difference post hoc analysis was used to determine differences between groups when ANOVA was significant. Statistical analysis of fiber cross-sectional area distribution was performed using the test (Fig. 3C). Statistical significance was set at P 0.05.

**RESULTS**

**REDD1-KO Mice Have No Distinct Muscle Phenotype Under Basal Conditions**

Like others (5), we did not observe any difference in the body weights of 6- to 25-wk-old males and females between WT and REDD1-KO mice (data not shown). In addition, tibia length (WT: 18.62 ± 0.15 mm; KO: 18.39 ± 0.14 mm) and heart weight (WT: 137.3 ± 4 mg; KO: 142.6 ± 3.2 mg) were similar in 25-wk-old WT and REDD1-KO males. We determined the mRNA level of REDD1 in several muscles of WT...
mice (Fig. 1A). We decided to focus on TA and GAS muscles notably because of their high amounts of REDD1 mRNA and the reproducibility in muscle weight determination. Importantly, REDD1 deletion was not compensated by an increase in REDD2 expression, a functionally related protein (Fig. 1B). We next sought to determine whether REDD1 deficiency altered skeletal muscle mass under basal conditions. However, TA and GAS muscles weights were not affected in 2-, 6-, and 13-mo-old REDD1-KO vs. WT males (Fig. 1C). We then explored the contractile phenotype of REDD1-KO muscles. Neither myosin heavy-chain mRNA levels of TA muscle nor typology of SOL and GAS muscles determined by ATPase

Fig. 1. Characterization of muscle phenotype in response to regulated in development and DNA damage (REDD)1 deletion: A: mRNA expression of REDD1 in soleus (SOL), tibialis anterior (TA), gastrocnemius (GAS), quadriceps (Q), and extensor digitorum longus (EDL) of wild-type (WT) mice. Bars with different letters are different from each other (P<0.05), whereas values exhibiting the same letters are not significantly different (n = 5/group). B: REDD2 mRNA in TA muscle of WT and REDD1-knockout (KO) mice (n = 7–8/group). C: TA and GAS muscle weights of 2-, 6-, and 13-mo-old WT and REDD1-KO males (n = 6–7/group). D: top: myosin heavy-chain (MyHC) mRNA expression in TA muscle of WT and REDD1-KO males (n = 6–7/group). D: bottom: fiber type distribution determined by the ATPase method in SOL and GAS muscles of WT and REDD1-KO females (n = 4/group). E: in situ maximal force and resistance to fatigue of triceps surae (GAS/L muscles) in WT and REDD1-KO females (n = 7/group). Data are means ± SE.

Fig. 2. REDD1 and REDD2 expression in response to dexamethasone (DEX) treatment: A: representative blots of REDD1 in GAS muscle 5 and 24 h after acute 1 mg/kg body wt) or after a 7 days of treatment with 1 mg·kg⁻¹·day⁻¹ or 200 g·kg⁻¹·day⁻¹, with the last dose being administrated 5 or 24 h before muscle sample. B: REDD1 and REDD2 mRNA levels in TA muscle of CTRL (mice given tap water) or treated WT and REDD1-KO mice (1 mg·kg⁻¹; n = 7–8/group; treated animals are represented by hatched bars). C: glucocorticoid receptor (GR) mRNA levels in TA muscle and fecal corticosterone in CTRL WT and REDD1-KO mice (n = 7–8/group). **P < 0.01 and ***P < 0.001 vs. corresponding CTRL. Data are means ± SE.
activity were different in REDD1-KO vs. WT (Fig. 1D). Finally, we measured the in situ contractility of the triceps surae (GAS SOL muscles) in REDD1-KO and WT female mice. Again, maximal force and resistance to fatigue were similar in both genotypes (Fig. 1E). Together, our results showed that REDD1-KO mice did not exhibit any evident muscle phenotype under basal conditions.

**REDD1-KO Mice are Resistant to DEX-Induced Skeletal Muscle Atrophy**

We next challenged the animals with DEX administration to induce skeletal muscle atrophy. We used only female mice for DEX experiments because females/women are more responsive to DEX-mediated muscle atrophy compared with males/men (2, 25). We gave a single dose of DEX (1 mg/kg) to WT females. Whereas REDD1 protein content was significantly increased 5 h after the administration, it was undetectable 24 h after the treatment (Fig. 2A). Concerning the 7 days of treatment, we checked that REDD1 expression was still inducible with a similar kinetic (i.e., 5 vs. 24 h; Fig. 2A). Importantly, the rise in REDD1 protein content was dose dependent (200 g·kg⁻¹·day⁻¹ vs. 1 mg·kg⁻¹·day⁻¹; Fig. 2A) and was related to a strong increase in its mRNA (Fig. 2B). We also measured REDD2 mRNA after acute DEX administration to rule out a potential compensation by REDD2 in KO mice. On the contrary, REDD2 expression was reduced in GAS muscle of treated REDD1-KO mice compared with CTRL, whereas the decrease failed to reach significance in WT treated animals (P = 0.11; Fig. 2B). Since DEX effects are dependent on GR expression, we checked to determine whether or not its mRNA level was different between WT and KO mice (Fig. 2C).

Moreover, there was no difference in basal corticosterone excretion between WT and REDD1-KO mice (Fig. 2C).

Finally, because 200 g·kg⁻¹·day⁻¹ DEX was sufficient to increase REDD1 protein content, and to get closer to the therapeutic dose, we treated female WT and REDD1-KO mice with 200 g·kg⁻¹·day⁻¹ DEX for 7 days. This treatment led to a statistically similar loss of spleen mass (Table 2) in WT (18%) and KO mice (24%), suggesting that animals received equal amounts of DEX, as proposed by others (2). DEX administration induced a significant loss of body weight only in WT mice (8% vs. CTRL; Table 2). The reduction in body mass seen in the DEX-treated WT mice was accompanied by a significant decrease in the mass of both TA (12% vs. CTRL) and GAS muscles (10% vs. CTRL). In contrast, DEX had no effect on muscle weight of REDD1-KO mice (Fig. 3A). We also measured fiber cross-sectional area (CSA) in the TA of WT and REDD1-KO mice. Consistently with muscle weight, TA of DEX-treated WT mice showed a significant decrease in mean fiber CSA (17% vs. CTRL; Fig. 3B) together with a shift in fiber CSA distribution toward smaller fibers.

![Fig. 3. Skeletal muscle weights and fiber size in WT and REDD1-KO mice after 7 days of DEX treatment (200 g·kg⁻¹·day⁻¹). A: GAS and TA muscle weights in WT and REDD1-KO mice after 7 days of water or DEX treatment (n = 8–10/group). B–D: mean fiber cross-sectional area (CSA; B) and distributions of fiber CSA from the TA muscle of WT (C) and REDD1-KO mice (D) following water or DEX administration (n = 5–7/group. 1,700 fibers/muscle were counted). *P = 0.05 and **P = 0.01 vs. corresponding CTRL. Black and open bars, CTRL; hatched bars, DEX-treated mice. Data are means ± SE.](image-url)

| Table 2. Body and spleen weights of WT and REDD1-KO mice after DEX or water administration for 7 days |
|---------------------------------------------|--------|--------|--------|--------|
|                             | WT DEX | KO DEX |       |
| Final BW (% starting BW)     | 95.8   | 8.8    | 88.4   | 0.8*   | 95.5   | 1.6    | 92.5   | 1.1    |
| Spleen, mg                   | 84.6   | 5.6    | 61.7   | 2**    | 89.1   | 6.6    | 66.1   | 2.3*** |

Values are means ± SE. BW, body weight; WT, wild type; KO, knockout; DEX, dexamethasone. *P = 0.05, **P = 0.01, and ***P = 0.001 vs. corresponding control; n = 8–10/group.
skeletal muscle. We thus assessed mTORC1 activity by monitoring phosphorylation of some of its downstream targets. DEX treatment induced a significant decrease in the phosphorylation of S6 on Ser\(^{240/244}\) (36% vs. CTRL) and 4E-BP1 on Thr\(^{37/46}\) (37% vs. CTRL) in WT mice (Fig. 4B). In contrast, no difference in phosphorylation of these targets was found in REDD1-KO mice.

REDD1 has been proposed to negatively regulate mTORC1 activity via the release of TSC2 from 14-3-3 in mouse embryonic fibroblasts (14). We measured the interaction between 14-3-3 and TSC2 by coimmunoprecipitation in CTRL or treated WT and REDD1-KO muscles. We observed a main positive effect (\(P = 0.026\)) of DEX on TSC2 sequestration by 14-3-3 in WT (132%) and REDD1-KO mice (125%) 5 h after administration (Fig. 4C). This increase was accompanied by a significant rise in Akt phosphorylation on Ser\(^{473}\) in WT treated mice (83%, \(P = 0.033\)), whereas this rise failed to
reach statistical significance in REDD1-KO mice (54%, \( P = 0.38 \); Fig. 4D). Akt-dependent TSC2 phosphorylation on Ser\(^{308} \) was correlated with Akt phosphorylation on Ser\(^{473} \) without reaching significance (41%, \( P = 0.32 \), and 21%, \( P = 0.59 \), in WT and REDD1-KO treated mice, respectively; Fig. 4D). However, a recent study showed that REDD1 promotes inhibition of Akt by Thr\(^{308} \) dephosphorylation. We observed here that DEX treatment tended to decrease Akt Thr\(^{308} \) (37%, \( P = 0.088 \)) only in WT mice (Fig. 4D). Akt also activates mTORC1 through inhibitory phosphorylation of PRAS40 (23, 37). Consistently with Akt Thr\(^{308} \) variations, Akt-dependent PRAS40 phosphorylation on Thr\(^{246} \) was significantly decreased in DEX-treated WT mice only (40%, \( P = 0.05 \); Fig. 4D). Importantly, we observed the same results on the mTORC1 pathway in TA muscle (n = 3; data not shown).

**Proteolysis is Not Increased 5 h After DEX Administration in Either WT or REDD1-KO Mice**

With muscle mass resulting from the balance between protein synthesis and proteolysis, we next investigated the activation of the proteolytic machinery. GCs are known to promote proteolysis by increasing the expression of specific genes involved in the ubiquitin/proteasome system (UPS) and the autophagy processes. Protein degradation, assessed by tyrosine release, was not affected in either WT or REDD1-KO mice 5 h after DEX administration in GAS muscle (Fig. 5A). We found the same result in extensor digitorum longus (EDL) muscle (data not shown). Consistently, the profile of ubiquitinated proteins remained unchanged (Fig. 5B). In contrast, mRNA content of the transcription factors forkhead box O1 (FOXO1) and FOXO3a showed a significant increase in both WT and REDD1-KO treated mice (Fig. 5C). Concerning the muscle-specific E3 ligases, DEX increased MuRF1 mRNA level in WT and REDD1-KO mice, although it had no significant effect on MAFbx expression (Fig. 5D). Analysis of autophagy markers revealed a significant increase in the LC3-II/LC3-I ratio together with a decrease in ULK1 inhibitory Ser\(^{757} \) phosphorylation in WT mice only (Fig. 5E). However, we showed a significant and similar decrease in p62 expression in both WT and REDD1-KO mice after DEX treatment (Fig. 5E). In parallel, mRNA expression of four genes involved in autophagy/lysosome degradation, Bnip3, Lamp2a, LC3, and cathepsin L, displayed a significant increase in both WT and REDD1-KO treated mice (Fig. 5F), with the response to DEX being not different between genotypes.

**DISCUSSION**

The aim of this study was to investigate the effect of REDD1 deletion on skeletal muscle phenotype under basal conditions and during DEX-induced atrophy. Although REDD1 has been characterized as a negative regulator of mTORC1, its deletion does not promote skeletal muscle hypertrophy under basal conditions, which is in agreement with the recent report of Williamson et al. (50) on the gastrocnemius muscle. This result is consistent with the fact that REDD1 is expressed to a low level under basal conditions. However, we showed here for the first time that REDD1 inhibition prevents GC-mediated muscle atrophy in mice via the suppression of the inhibitory effect of DEX on protein synthesis and mTORC1 activity through a REDD1-Akt-PRAS40 axis (Fig. 6).

**Experimental Model**

Treatment with synthetic GCs is associated with skeletal muscle atrophy and/or a so-called steroid myopathy. This deleterious condition affects many patients suffering from respiratory diseases, autoimmune diseases, or cancers. Recently, several teams have shown that the mTORC1 inhibitor REDD1 was strongly induced by DEX administration in skeletal muscle tissue (24, 39, 48). Thus, one objective of this study was to determine the role of REDD1 on DEX-induced skeletal muscle atrophy. We used relatively low doses of DEX and short treatment durations compared with those usually given in rodent studies [e.g., Baehr et al. (2), 3 mg/kg for 14 days; Gilson et al. (18), 5 mg/kg for 4 days; Proserpio et al. (33), 2 mg/kg for 14 days]. We found that 200 \( \mu \text{g} \cdot \text{kg}^{-1} \cdot \text{day}^{-1} \) DEX for 7 days was sufficient to cause skeletal muscle atrophy and to raise REDD1 protein content in GAS muscle of WT female mice. We decided to focus on TA and GAS muscles because they can be accurately removed and weighed and because REDD1 mRNA levels were greater than in SOL and EDL muscles. Moreover, these type II fiber-rich muscles express high amounts of GR (39) and are thus more sensitive to the GC-atrophying effect. Accordingly, we observed similar results on muscle weight and the mTORC1 pathway between GAS and TA after DEX treatment. Because we did not observe any difference in the typology between KO and WT muscles, the resistance to DEX-induced atrophy is not related to a more oxidative phenotype in REDD1-KO animals. Females/women are more responsive to DEX-mediated muscle atrophy compared with males/men (2, 25). This greater sensitivity may be related to the anabolic effects of testosterone that prevent skeletal muscle atrophy when coadministered with DEX (51). Interestingly, the protective effect of testosterone has been associated with a lack of increase in REDD1 expression upon DEX treatment (51), underlining the importance of REDD1 in promoting muscle atrophy.

**Role of REDD1 on mTORC1 Pathway**

REDD1 gene expression is highly sensitive to many stresses in different tissues (15, 16, 22, 49). We used short-term DEX treatment to depict the molecular mechanisms underlying muscle mass protection in REDD1-KO mice. The strong increase in REDD1 mRNA and protein level 5 h after gavage with DEX in WT mice was correlated with reduced phosphorylation of downstream mTORC1 targets (S6 Ser\(^{244} \), 4E-BP1 Thr\(^{37/46} \), and ULK1 Ser\(^{757} \)) along with the reduction in protein synthesis. In contrast, DEX-treated REDD1-KO mice did not exhibit any impairment either in the Akt/mTORC1 pathway or on protein synthesis, leading to muscle mass sparing. To investigate how REDD1 acts on the mTORC1 pathway, we measured the interaction between 14-3-3 and TSC2, a mechanism promoted by Akt that results in TSC2 inhibition (9). Indeed, DeYoung et al. (14) proposed that REDD1 could release TSC2 from 14-3-3 during in vitro hypoxia, leading to mTORC1 inhibition. Contrary to these expectations, we found a positive effect of DEX on TSC2/14-3-3 interaction in WT and REDD1-KO treated mice vs. CTRL. The binding of 14-3-3 on TSC2 is triggered by Akt-dependent TSC2 phosphorylation (9). In our conditions, the increase in TSC2 sequestration by 14-3-3 was associated with a significant increase in Akt Ser\(^{473} \) phosphorylation (in WT only) and a nonsignificant increase in
Fig. 5. Proteolysis and proteolytic markers 5 h after DEX administration (1 mg/kg) in WT and REDD1-KO mice. A: tyrosine release was measured to assess degradation on isolated GAS muscles (n = 8/group). B: representative blot and quantification of ubiquitinated proteins in GAS muscle of CTRL and DEX-treated animals (n = 7–8/group). C and D: mRNA levels of genes related to UPS activation in TA muscles of CTRL and DEX-treated WT and REDD1-KO mice. Expression of individual genes was normalized to β-tubulin and expressed as fold change from WT CTRL values (n = 7–8/group). E: representative blots and corresponding quantifications of ATG markers in GAS muscles of CTRL and DEX-treated WT and REDD1-KO mice (n = 7–8/group). F: mRNA levels of genes involved in ATG activation in TA muscles of CTRL and DEX-treated WT and REDD1-KO mice. Expression of individual genes was normalized to β-tubulin and expressed as fold change from WT CTRL values (n = 7–8/group). CATHL, cathepsin L. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. corresponding CTRL; $P < 0.05 vs. corresponding WT group. Black and open bars are CTRL, and hatched bars DEX-treated mice. Data are means ± SE.
Akt-dependent TSC2 Ser\(^{939}\) phosphorylation. Akt phosphorylation has been shown to be inhibited by the negative feedback loop of mTORC1/S6K on insulin receptor substrate-1 (45). Here, the increase in Akt Ser\(^{973}\) phosphorylation in WT treated mice was likely caused by the decrease in this feedback since mTORC1 was inhibited, leading to the observed increase in TSC2/14-3-3 association. In REDD1-KO mice, DEX failed to reduce the S6K negative feedback on Akt since S6 Ser\(^{240/244}\) and Akt Ser\(^{973}\) phosphorylations were unchanged. However, TSC2/14-3-3 binding increased to a similar extent in REDD1-KO and WT muscles, suggesting a more complex regulation of TSC2 sequestration. Recently, Dennis et al. (13) showed that REDD1 was responsible for Akt Thr\(^{308}\) dephosphorylation in cultured cells, leading to mTORC1 inhibition.

Accordingly, we observed that DEX induced a decrease in Akt Thr\(^{308}\) phosphorylation in WT mice only. Importantly, it has been demonstrated that this phosphorylation is required for full activation of Akt (1). Consistently, the observed decrease in Akt Thr\(^{308}\) phosphorylation was associated with a reduction in its inhibitory action on the mTORC1 inhibitor PRAS40. Interestingly, it has been proposed that PRAS40 could be sequestered by 14-3-3 following its phosphorylation by Akt in cell culture (23, 46). Although we also observed a coimmunoprecipitation (IP) between PRAS40 and 14-3-3 in HEK-293 cells, we did not detect this complex in mouse skeletal muscle using the same lysis buffer, antibodies, or IP condition (data not shown). Altogether, our results suggest a complex regulation of Akt substrates depending on Akt residue phosphorylation (Ser\(^{473}\) or Thr\(^{308}\); Fig. 6).

In summary, our data support an inverse correlation between REDD1 expression and mTORC1 activity, and this regulation seems to be Akt/PRAS40 dependent.

**Proteolytic Systems Activation**

GCs have been shown to promote muscle proteolysis after repeated daily administration (2, 12). However, 5 h after DEX treatment, we did not observe any change in tyrosine release or ubiquitin profile in either WT or REDD1-KO GAS muscle, suggesting that proteolysis was not activated at this early time. Moreover, tyrosine release was not affected by acute DEX administration on EDL muscle (data not shown). In contrast, p62 protein content was significantly decreased in both WT and REDD1-KO muscles after DEX treatment, suggesting enhancement of autophagy flux. It is likely that tyrosine release and ubiquitin profile, two global markers of protein degradation, require more time to present signification variations. We further investigated the mechanisms regulating UPS and autophagy/lysosomal activity, as these two systems contribute to GC-mediated proteolysis. DEX induced a similar increase in mRNA level of MuRF1 (UPS), BNIP3, LC3, LAMP2A, and cathepsin L (ATG/lysosomal system) as well as FOXO1 and -3 (UPS and ATG/lysosomal system) in both WT and KO mice. This shows that REDD1 does not play a role in the transcriptional response of atrogenes consecutive to DEX treatment. In addition, ATG can be activated by the release of mTORC1 inhibition on ULK1 (52). Once activated, ULK1 partially promotes LC3 lipiddation (11), i.e., the conversion from LC3-I to LC3-II, a common marker of autophagosome maturation.

We observed a decrease in the mTORC1-dependent ULK1 phosphorylation together with an increase in LC3 activation after DEX treatment only in WT mice. In accord with our data, Molitoris et al. (29) reported that DEX-induced REDD1 expression promotes LC3 lipiddation and autophagosome formation in lymphocytes. Taken together, these results suggest that REDD1 is required to induce the ULK1-dependent LC3 activation following DEX administration. However, because proteolysis, ubiquitin profile, and p62 degradation were unchanged between treated WT and KO mice, this means that REDD1-mediated LC3 activation is not sufficient to strongly modulate protein breakdown 5 h after DEX administration. Finally, the major event at early time points after GC stimulation is a reduction in protein synthesis rather than an increase in proteolysis.
In summary, we provide in vivo evidence that REDD1 deficiency prevents skeletal muscle loss after 7 days of treatment with low doses of GC. In this context, the absence of REDD1 prevents the GC-induced decrease in mTORC1 activity and in protein synthesis. GCs are widely used for treatment of autoimmune and inflammatory diseases, and high levels of endogenous GC have also been reported in several diseases or catabolic states such as diabetes mellitus (20), sepsis (38), metabolic acidosis (27), or fasting (28). Given that I) REDD1 basal expression is very low but strongly increased in catabolic states and 2) basal REDD1 inhibition does not lead to an obvious phenotype, this makes it a potential target for the prevention of muscle wasting.

ACKNOWLEDGMENTS

We are grateful to Quark Pharmaceuticals for providing the REDD1-knockout mice. We thank François Casas, Elena Feinstein, and Barbara Diamant for critical reading of the manuscript.

Present address of G. Begue: Human Performance Laboratory, Ball State University, 2000 W. University Ave., Muncie, IN 47306.

GRANTS

F. A. Britto was supported by an Allocation Doctoral de Recherche from the Ministère de l’Enseignement Supérieur et de la Recherche.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS


REFERENCES

involved in apoptosis.


