Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles
Francois Alexandre, Gerard Derosiere, Maria Papaiordanidou, Maxime Billot, Alain Varray

To cite this version:
Francois Alexandre, Gerard Derosiere, Maria Papaiordanidou, Maxime Billot, Alain Varray. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles. Acta Physiologica, Wiley, 2015, 214 (1), pp.124-134. <10.1111/apha.12478>. <hal-01622341>

HAL Id: hal-01622341
https://hal-umontpellier.archives-ouvertes.fr/hal-01622341
Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles

François Alexandre a,b, Gerard Derosiere a,c,2, Maria Papaiordanidou a,d, Maxime Billot a,1, Alain Varray a

Affiliations:
a, Movement To Health, Euromov, Montpellier University, Montpellier, France
b, Clinique du Souffle "la Vallonie", Fontalvie, Lodève, France
c, Biomedical Engineering Research Group, National University of Ireland, Maynooth, Co Kildare, Ireland
d, Institut des Sciences du Mouvement, Aix-Marseille University, Marseille, France

Corresponding author
François Alexandre, Movement to Health, Faculty of Sports Sciences, Montpellier University, Euromov, 700 Avenue du Pic Saint Loup, 34090, Montpellier, France.
Tel.: + 33. (0)434.432.632; Fax: + 33. (0)434.432.644
E-mail: francois.alexandre@fontalvie.fr

Present adress:
1, Faculté de médecine, Département de kinésiologie, Université Laval, Québec, Canada
2, Cognition and Actions Laboratory, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium

Short title: Cortical motor output after electrically induced fatigue
Abstract

Aim: Neuromuscular electrical stimulation (NMES) causes early onset of neuromuscular fatigue. Peripheral electrophysiological explorations suggest that supra-spinal alterations are involved through sensitive afferent pathways. As sensory input is projected over the primary somatosensory cortex (S1), S1 area involvement in inhibiting the central motor drive can be hypothesized. This study assessed cortical activity under a fatiguing NMES protocol at low frequency.

Methods: Twenty healthy males performed five NMES sequences of 17 trains over the plantar flexors (30 Hz, 4s on/6s off). Before and after each sequence, neuromuscular tests composed of maximal voluntary contractions (MVCs) were carried out. Cortical activity was assessed during MVCs with functional near-infrared spectroscopy over S1 and primary motor (M1) areas, through oxy-[HbO] and deoxy-hemoglobin [HbR] variation. Electrophysiological data (H-reflex during MVC, EMG activity and level of voluntary activation) were also recorded.

Results: MVC torque significantly decreased after the first 17 NMES trains ($p<0.001$). The electrophysiological data were consistent with supra-spinal alterations. In addition, [HbO] declined significantly during the protocol over the S1 and M1 areas from the first 17 NMES trains ($p<0.01$ and $p<0.001$, respectively), while [HbR] increased ($p<0.05$ and $p<0.01$, respectively), indicating early decline in cortical activity over both primary cortical areas.

Conclusions: The declining cortical activity over the M1 area is highly consistent with the electrophysiological findings and supports motor cortex involvement in the loss of force after a fatiguing NMES protocol. In addition, the declining cortical activity over the S1 area indicates that the decreased motor output from M1 is not due to increased S1 inhibitory activity.
Key words: Neuromuscular electrical stimulation, supra-spinal fatigue, central motor drive, fNIRS
1. Introduction

Neuromuscular electrical stimulation (NMES) is a peripheral type of solicitation that consists of setting off a muscular contraction electrically by activating intramuscular nerve branches (Hultman et al., 1983). Despite widespread clinical use, NMES presents a strong limitation: it provokes rapid and excessive neuromuscular fatigue (Doucet et al., 2012, Downey et al., 2011). In rehabilitation, low stimulation frequencies are often preferred as they delay the development of neuromuscular fatigue compared with high stimulation frequencies (Gorgey et al., 2009). Therefore, previous investigations of NMES-induced neuromuscular fatigue were conducted at low frequencies, notably over the plantar flexors (Papaiordanidou et al., 2010b) and the thumb abductor muscle (Papaiordanidou et al., 2010a). Opposite effects were reported, depending on the nature of the stimulated muscle: whereas NMES applied over the high fatigue-resistant plantar flexor muscles mainly induced supra-spinal alterations (Papaiordanidou et al., 2010b), the authors failed to report the same effects over the low fatigue-resistant thumb abductor muscle (Papaiordanidou et al., 2010a). In both studies, given the preservation of spinal excitability, the presence or absence of supra-spinal alterations were deduced at the peripheral level through (i) the level of voluntary activation (LOA) and (ii) the root mean square (RMS) of the electromyographic (EMG) activity normalized by the maximal M-wave (RMS_{EMG}/M), two markers that may lead to misinterpretation. Indeed, LOA sometimes overestimates the neural drive (Kooistra et al., 2007), while RMS_{EMG} may underestimate it because of the amplitude cancellation phenomenon (Keenan et al., 2005). Therefore, if based only on the use of peripheral markers, the existence of supra-spinal alterations in electrically induced fatigue remains mainly speculative.

The complementary use of neuroimaging techniques like functional near infrared spectroscopy (fNIRS) or functional magnetic resonance imaging (fMRI) could resolve this issue. Previous studies have reported a decline in cortical activity during volitional fatigue
using fNIRS (Shibuya & Tachi, 2006) and fMRI (Liu et al., 2002), suggesting the relevance of such techniques to explore the neurophysiological mechanisms associated with the fatigue phenomenon.

One might therefore wonder which brain areas would be of interest in a neuroimaging-based investigation of electrically induced neuromuscular fatigue. The primary motor area (M1) is incontestably of relevance in this context as it represents the main motor output from the cortex to the spinal cord. Second, the primary somatosensory cortex (S1) is a candidate as it houses projections from the group III and IV afferents (Almeida et al. 2004; Chen et al. 2009; Kalliomaki et al. 1998; Schouenborg et al. 1986), which are strongly suspected of involvement in the neuromuscular fatigue under NMES (Boerio et al. 2005; Papaiordanidou et al. 2010b). The potential involvement of the S1 area in central motor drive inhibition is supported by several studies reporting increased activity in this area during electrical nerve stimulation (Forss et al., 1994, Hlushchuk & Hari, 2006). Also, the increase in S1 activity was found to occur in parallel to a decrease in primary motor cortex (M1) activity (Chen et al., 1999, Hlushchuk & Hari, 2006) and excitability (Chen et al., 1999, Tokimura et al., 2000). Accordingly, an inhibitory influence exerted by the S1 area toward the M1 area has been hypothesized (Sutherland, 2006).

Besides the potential involvement of the S1 area in decreasing motor output, many studies have reported prefrontal cortex (PFC) deactivation during volitional fatigue just before task failure (Shibuya et al., 2004, Rupp & Perrey, 2008). As the PFC area is the main facilitation structure of the brain (Tanaka & Watanabe, 2012), it seems likely that it would be implicated in non-volitional fatigue, although this has not yet been investigated.

To contribute to a better understanding of the neural substrates of NMES-induced neuromuscular fatigue, the present study aimed to (i) attest the supra-spinal alterations by cortical measurements and (ii) test for S1 area involvement in the decrease in motor output.
after a fatiguing NMES task at low frequencies over the plantar flexor muscles. We hypothesized an increase in S1 area activity, a decrease in M1 activity and central motor drive failure after electrically induced neuromuscular fatigue.

2. Materials and methods

2.1. Participants
Twenty healthy males (mean age 23.9 ± 2.4 years) participated in the study. They were all physically active, with no history of lower limb surgery or recent injury and no neurological, endocrine, respiratory, or cardiovascular disease or medication use that could affect brain function or perfusion. After being informed about the objectives and potential risks of participation in the study, they all gave written consent. They were asked to avoid any violent effort during the two days before the experimental session. All procedures were approved by the local Ethics Committee and complied with the principles of the Declaration of Helsinki for human experimentation.

2.2. Pre-experiment
Nine participants were tested in a control session 7 to 10 days prior to the experiment. During this control session, the settings and the protocol were strictly the same as for the experimental session (as detailed below), except that the NMES sequences (fatigue protocol) were replaced by resting periods that lasted 3 minutes.

2.3. Experimental design
The experimental session began with a standard warm-up consisting of 12 submaximal plantar flexions for 2 s every 5 s, and then six maximal plantar flexions every 30 s. The
participants were also familiarized with superimposed evoked potentials at this time. Familiarization to maximal plantar flexions was assumed to be sufficient when task criteria were reached (quick rise in force, maintenance of a plateau, absence of compensatory movements). The protocol began with a 3-min resting period to stabilize the participant's physiological variables. The fatigue protocol consisted of five sequences of 17 stimulation trains of the plantar flexor muscles, each lasting 3 min. Neuromuscular tests were performed before and after each stimulation sequence in order to obtain a follow-up before (pre), during (post17, post34, post51, post68), and after (post85) the protocol. The design is presented in Fig. 1A.

2.4. Fatigue protocol

The plantar flexor muscles of the dominant leg, formed by the gastrocnemii medialis and lateralis and the soleus muscles, were electrically stimulated by a constant-current stimulator (Cefar Physio 4, Cefar Medical, Lund, Sweden) delivering rectangular symmetric, biphasic pulses at maximal tolerated intensity. The two rectangular 50-cm² surface electrodes (Medicompex, Ecublens, Switzerland) were respectively placed 5 cm under the popliteal fossa and at the level of the insertion point of the two gastrocnemii muscles on the Achilles tendon. Train characteristics were the following: frequency 30 Hz, pulse duration 450 µs, duty cycle 40% (4 s on, 6 s off), and intensity: maximal tolerated, readjusted at the beginning of each sequence to reach the maximal tolerated threshold continuously (Maffiuletti, 2010). The mean intensity was 33.83 ± 7.7 mA. The mean percentage of maximal voluntary torque evoked by the stimulation trains was 44.06 ± 13.82%.
2.5. Measurements

2.5.1. Mechanical recording

Plantar flexion torque during voluntary and electrically induced contractions of the dominant leg was recorded by a Biodex System 3 isokinetic dynamometer coupled with the Biodex Advantage Software Package (Medical System Inc., Shirley, NY, USA). The dominant leg was determined using the balance recovery test (Hoffman et al., 1998). The participant was comfortably seated on the Biodex chair in a semi-lying position, with a 30° back inclination. Chair adjustments were made to line up the foot, the patella and the coxofemoral articulation in the same axis. The ankle and knee angles were respectively set to 90° and 110° (180° full extension) and the dynamometer axis was aligned with the anatomical ankle plantar- and dorsi-flexion axis. The pelvis and the proximal extremity of the patella were securely attached to the chair to minimize the movements of adjacent muscles.

2.5.2. EMG recording

The surface EMG signals of the soleus and antagonist tibialis anterior muscles were recorded using bipolar, silver chloride, square surface electrodes with a 9-mm diameter (Contrôle Graphique Médical, Brie-Compte-Robert, France). In order to minimize impedance (<5 kΩ), the skin was shaved, abraded, and cleaned with alcohol. After verification of an appropriate M-wave acquisition (single response and highest amplitude), electrodes were placed over the muscle belly with an interelectrode distance of 20 mm. The reference electrode was placed on the opposite wrist. The EMG signal was amplified (gain × 1000), bandpass-filtered (10-500 Hz) and recorded at a sampling frequency of 4096 Hz (Biopac MP100, Biopac Systems, Santa Barbara, CA, USA).
2.5.3. Electrically evoked potentials

Muscle excitability was evaluated by the superimposed M-wave (Msup), spinal excitability by the superimposed H-reflex (Hsup), and spinal and supra-spinal adaptations by the volitional wave (V-wave). These three evoked potentials were assessed during plantar flexor maximal voluntary contraction (MVCs) by stimulation of the tibial nerve with a constant-current, high voltage stimulator (DS7AH, Digitimer, Hertforshire, UK). Rectangular monophasic pulses of 200 µs were used (Papaiordanidou et al., 2010b). The cathode (a silver chloride square surface electrode) was fixed on the popliteal fossa. A piece of foam, sustained by a strap, was applied over the cathode to optimize contact with the tibial nerve, situated in depth. The anode (a rectangular 50 cm² surface electrode) was placed beneath the patella. After localization of the optimal site for tibial nerve stimulation, where no response could be observed on the antagonist tibialis anterior, the M-wave and H-reflex recruitment curves were performed at rest. One pulse was delivered on the tibial nerve every 10 s with the intensity increasing from 10 mA until no further increase in twitch mechanical response and M-wave amplitude occurred. To ensure that M-wave was maximal during MVCs, the maximal intensity at which maximal M-wave amplitude was reached was increased by 20% (supramaximal intensity, IMmax) to account for activity-dependent changes in motor axonal excitability (Racinais et al., 2013). This intensity was used during MVCs to obtain Msup and V-wave. Subsequently to IMmax determination, the intensity where the maximum H-reflex was observed was carefully sought (IHmax) using 2-mA increments. IHmax was used during MVCs to obtain Hsup.

2.5.4. Cortical activity recording

Cortical activity was assessed with a continuous wave multichannel functional near-infrared spectroscopy (fNIRS) system (Oxymon Mark III, Artinis, the Netherlands) as described elsewhere (Derosiere et al., 2014). Briefly, it is based on neurovascular coupling: when neural
activity increases, the increase in regional cerebral blood flow is ten times higher than the
drop in regional oxygen consumption, leading to local hyperoxygenation (Fox et al.,
1988), and a subsequent increase in fNIRS-measured oxy-hemoglobin (HbO) with a decrease
in fNIRS-measured deoxy-hemoglobin (HbR) (Colier et al., 1999). The fNIRS optodes were
positioned over the scalp in accordance with the extended modified international EEG 10-10
systems (Fig. 2). One receptor and four emitters were placed around C3 and CP3 (left
hemisphere) for right leg stimulation or C4 and CP4 (right hemisphere) for left leg stimulation
at a 3.5-cm interoptode distance. This probe arrangement allowed us to target the contralateral
(to the stimulated dominant leg) primary motor cortex (M1) and the contralateral
somatosensory cortex (S1), through the rostral and caudal parts, respectively. Four recording
paths were obtained: two over M1 and two over S1. To target the contralateral PFC area, one
receptor and one emitter were also placed around Fp1 (left hemisphere) for stimulation of the
right leg or Fp2 (right hemisphere) for stimulation of the left leg. fNIRS data were corrected
by implementing a specific differential pathlength factor \(4.99 + 0.067 \times \text{age}^{0.814}\) (Duncan et
al., 1996), which yielded more accurate measurement of the concentration changes,
converting the concentration changes in [HbO] and [HbR] to \(\mu\)M units (Delpy et al., 1988).
The sampling frequency was set at 10 Hz. The NIRS signals were low-pass filtered (finite
impulse response) with a cut-off frequency of 0.7 Hz to remove heart rate signal (Huppert et
al., 2009). Specific events were set in the Oxysoft software (V6.0, Artinis, the Netherlands) to
distinguish the beginning and the end of each MVC.

2.6. Neuromuscular tests

The neuromuscular tests were conducted during two MVCs with electrically evoked
potentials, voluntary activation assessment, and measurement of cerebral oxygenation. Each
subject was verbally encouraged during each MVC, which lasted for 4 s. During the plateau
of the first MVC, a single stimulation at $I_{M\text{max}}$ was first delivered. Immediately after, a superimposed doublet (100Hz) at $I_{M\text{max}}$ followed, as well as a control doublet 2 s after the relaxation, according to the twitch interpolation technique (Allen et al., 1995). During the plateau of the second MVC, a single stimulation at $I_{H\text{max}}$ was delivered. The MVCs were separated by a 1-min resting period, during which three resting stimulations at $I_{M\text{max}}$ were delivered to calculate the mechanical response (Pt). The design of the neuromuscular tests is presented in Fig. 1B.

2.7. Data analysis

The peak of the mechanical response (Pt) during the three resting evoked potentials of the neuromuscular tests was calculated and averaged. The torque evoked by the stimulation trains was recorded and averaged for the first three trains of the first NMES sequence (trains 1-3) and for the last three trains of each NMES sequence (trains 15-17, 32-34, 49-51, 66-68 and 83-85) in order to obtain muscle response to the stimulation trains. For each block of neuromuscular tests, the highest torque plateau of the two MVCs that lasted 500 ms was considered as the maximal voluntary torque. During the first of the two MVCs, the LOA was calculated as follows (Allen et al., 1995):

$$\text{LOA} (\%) = \left(1 - \frac{\text{superimposed doublet/control doublet}}{}\right) \times 100$$

The RMS of the soleus EMG activity (RMS$_{\text{EMG}}$) was calculated during the maximal torque plateau (as defined above) during each sequence of neuromuscular testing. The peak-to-peak amplitudes of Msup, V-wave and Hsup were calculated. EMG$_{\text{RMS}}$, V-wave and Hsup were normalized with respect to Msup to avoid any influence of peripheral changes on the central parameters: EMG$_{\text{RMS}}$/Msup, Hsup/Msup, V/Msup.

The area under the curve (AUC) of [HbO] and [HbR] was calculated and used as an index of cortical activity (Shimodera et al., 2012). AUC of [HbO] and [HbR] from each channel over
the M1, S1 and PFC areas was calculated and normalized over time from the beginning to the
end (labeled with the specific events set in the fNIRS software during recording) of the best of
the two MVCs performed during the neuromuscular tests. Data from the two channels over
M1 and from the two channels over S1 were then averaged, resulting respectively in an
overall response of the M1 and S1 areas.

2.8. Statistical analysis

All statistical analyses were performed using Statistica software (StatSoft, Inc., version 6.0,
Tulsa, OK, USA). All variables recorded before, during and after the NMES protocol (or
resting periods for pre-experiment check-up) were tested using a one-way repeated measure
ANOVA (time effect): before NMES (pre), after 17 trains (post17), after 34 trains (post34),
after 51 trains (post51), after 68 trains (post68) and after 85 trains (post85). The underlying
assumptions of ANOVA were checked using Skewness-Kurtosis coefficients (normality of
distribution) and the Mauchly test (sphericity of variance). When the ANOVA F ratio was
significant ($p<0.05$), means were compared by a LSD post-hoc test. Data are reported as
means and standard deviation (SD) unless specified.

3. Results

3.1. Pre-experiment check-up

The torque recorded during MVCs did not change significantly throughout the control
condition ($F=0.62$, $p=0.68$). Likewise, there was no significant changes nor in LOA neither in
evoked potential properties (all $p>0.15$). Furthermore, the cortical activity remained
unchanged during the control session over the M1 and S1 areas (all $p>0.31$).
3.2. Stimulation trains and maximal voluntary contraction torques

The torque evoked during the stimulation trains decreased during the NMES protocol ($F=16.2$, $p<0.001$). The decrease was significant from post17 ($p<0.01$) and remained significant until the end of the fatigue protocol (-8.2 to -14.8% between trains 15-17 to trains 83-85; Fig. 3A).

The torque produced during MVCs decreased throughout the NMES protocol ($F=21.5$, $p<0.001$). The decrease was significant from post17 ($p<0.001$) and remained significant until the end of the protocol (-10.8 to -19.9% between post34 and post85; Fig. 3B).

3.3. LOA, mechanical response and evoked potentials

Detailed results of the LOA, mechanical response and evoked potentials are given in Table 1.

A significant decrease in LOA ($F=9.06$, $p<0.001$) was observed immediately after the first 17 NMES trains ($p<0.01$). The Pt values decreased significantly ($F=16.28$, $p<0.001$) from post34 ($p<0.001$). Msup amplitude decreased significantly during the NMES protocol ($F=12.27$, $p<0.001$) from post17 ($p<0.001$). $\text{EMG}_{\text{RMS}}/\text{Msup}$ declined significantly during the experimental session ($F=3.4$, $p<0.01$) from post34 ($p<0.01$). V/Msup exhibited a significant decrease ($F=2.78$, $p<0.05$) immediately at post17 ($p<0.05$). $H_{\text{sup}}/\text{Msup}$ was not significantly modified ($F=1.135$, $p=0.35$).

3.4. Cortical activity

A significant decrease in [HbO] and increase in [HbR] were found over the M1 area during the experimental session ($F=8.49$, $p<0.001$ and $F=4.03$, $p<0.01$, respectively). These significant modifications of [HbO] and [HbR] occurred at post17 ($p<0.001$ and $p<0.05$) and persisted until the end of the protocol (Fig. 4A).
A comparable result ([HbO] decrease and [HbR] increase) was found over the S1 area (F=3.85, \(p<0.01\) and F=2.63, \(p<0.05\), respectively). The decrease in [HbO] was significant at post 17 (\(p<0.05\)), while [HbR] increased significantly from post34 (\(p<0.01\)) (Fig. 4B).

Over the PFC area, [HbO] was 1.17±0.31, 1.3±0.32, 1.27±0.31, 0.8±0.22, 0.97±0.19 and 0.76±0.33 µM at pre, post17, post 34, post51, post68 and post85, respectively, and was not significantly modified (F=1.43, \(p=0.24\)). [HbR] was -0.13±0.13, -0.06±0.07, -0.04±0.8, -0.03±0.07, -0.16±0.12 and -0.07±0.14 µM at pre, post17, post34, post51, post68 and post85, respectively, and was not significantly modified throughout the experimental session (F=1.14, \(p=0.35\)).

Figure 5 represents raw data of LOA, Msup, V-wave, Hsup and fNIRS signal from one individual participant at pre and post85.

4. Discussion

The present study aimed to identify the supra-spinal factors involved in neuromuscular fatigue induced by low frequency stimulation of the plantar flexors. The results showed the development of neuromuscular fatigue, as evidenced by the significant MVC torque decrease, which was accompanied by changes occurring at the supra-spinal level. The major finding of the study was an early and progressive decline in cortical activity over the M1 and S1 areas during MVCs following NMES trains.

Since the pre-experiment check-up did not reveal any parameters modifications (maximal voluntary torque, superimposed evoked potential and cortical activity), it can be assert that the NMES protocol caused all the identifying results in the experiment.
The neuromuscular fatigue induced by the NMES protocol was evidenced by the decrease in maximal voluntary torque. This torque alteration may have originated at peripheral, spinal or supra-spinal levels. Regarding the peripheral level, a decrease in Msup and peak twitch amplitude was observed, consistent with neuromuscular excitability and muscle contractility failure, respectively. These results support other studies investigating higher stimulation frequencies (75 Hz) and/or other muscular groups (Boerio et al. 2005; Papaiordanidou et al. 2010a; Zory et al. 2005).

Confirming previous studies (Boerio et al., 2005, Papaiordanidou et al., 2010b), neuromuscular fatigue could not be ascribed to spinal excitability alterations since the Hsup/Msup ratio did not change. Conversely, LOA and EMG_{RMS}/Msup decreased throughout the protocol. The decrease in these peripheral indices of the descending neural drive is consistent with a drop in the central motor drive. In accordance with earlier conclusions on the nature of the CNS alterations under NMES (Boerio et al., 2005, Papaiordanidou et al., 2010b), and because in the present study no modification in spinal excitability was found, the decrease in the central motor drive most probably was derived from the supra-spinal level.

As in a previous study conducted at higher frequencies (Laurin et al., 2012), we observed a V/Msup decrease, a change in a variable that likely reflects both spinal excitability (Crone & Nielsen, 1994) and descending neural drive (Aagaard et al., 2002). Because spinal excitability was not modified, it is assumed that the reported V/Msup decline was instead caused by a decrease in the descending neural drive upstream the spinal level. Thus, the V/Msup kinetic is in line with the involvement of supra-spinal impairments in decreasing the central motor drive under NMES.

Taken individually, electrophysiological parameters like V/Msup, LOA and EMG_{RMS}/Msup cannot provide information on the supra-spinal mechanisms responsible for torque decline. Furthermore, because they are recorded at the peripheral level, the decrease in central motor...
drive reflected by these markers, even when normalized over spinal and muscle properties, is based only on an extrapolation. In the current study, we used a new complementary approach to assess supra-spinal alterations by combining the results derived from classical electrophysiological data with neuroimaging. The fNIRS data exhibited a decrease in [HbO] and an increase in [HbR] over the M1 and S1 areas as neuromuscular fatigue developed, a typical sign of decreased neural activity (Wenzel et al., 2000). These results, which corroborate the electrophysiological data, are consistent with an immediate decrease in neural activity from the first NMES sequence. Furthermore, taken together, they provide the first evidence that a cortical motor output decline is implicated in the loss in voluntary force production after NMES.

The PFC area did not exhibit any changes in [HbO] or [HbR] throughout the fatiguing protocol. This area is notably involved in motivation (Kouneiher et al., 2009) and is considered as the main facilitation structure of the brain (Tanaka & Watanabe, 2012). Other studies have reported a decrease in [HbO] within the PFC area during voluntary whole-body exercise just before task failure, suggesting its possible involvement in decreasing neural drive (Rupp & Perrey, 2008, Shibuya et al., 2004). The same pattern could not be found with electrically induced fatigue, thus the decrease in cortical motor output cannot be ascribed to alterations in motivation or facilitation processes from the PFC area during this specific task.

One of the objectives of the study was to better understand the supra-spinal mechanisms responsible for voluntary muscle torque decline after NMES. Our initial hypothesis was that an increase in inhibitory input from the S1 to the M1 area would explain the decrease in cortical motor output. Because the activation of inhibitory interneurons increases local energy consumption (Jueptner & Weiller, 1995), areas involved in the onset of motor output inhibition should appear overactivated. In the current study, both the M1 and S1 areas were deactivated, so it can be assumed that the onset of the inhibition process took place upstream.
of these two primary cortical areas. It is thus possible to suggest the involvement of deeper structures. The thalamus, the insular and the cingulate cortex should be considered, as their implication in the inhibition of central motor drive has been clearly suggested during volitional fatigue (Tanaka et al., 2013, Hilty et al., 2011a, Jouanin et al., 2009).

The decrease in cortical activation over the M1 and S1 areas was evident from the very first NMES sequence. Previous studies dealing with voluntary fatigue contractions reported a different activation pattern, showing an initial increase in cortical activity followed by a final decrease in cortical activity near the exhaustion threshold (Liu et al., 2002, Shibuya & Tachi, 2006, Shibuya & Kuboyama, 2010). The early decrease in cortical activity after NMES is in accordance with the characteristics of electrically induced contractions as opposed to voluntary contractions. Here, we suggest that the higher metabolic stress induced by NMES (Jubeau et al., 2012, Theurel et al., 2007) led to an early elevated firing rate of the group III and IV afferents, which in turn caused the recruitment of inhibitory interneurons within the brain to decrease the central motor drive.

Methodological consideration:

We did not assess the gastrocnemius EMG activity. At 110°-knee joint angle, the contribution of the gastrocnemius muscles to plantar flexor torque should be between 30% and 40% (Cresswell et al., 1995; Fukunaga et al., 1992). After the electrically-induced fatigue, we observed a decline in the plantar flexor torque without the possibility to identify the contribution of each muscle in the declining torque. Although we could only report a decline of the soleus EMG_RMS activity, a similar decline in the gastrocnemius muscles is strongly expected (Papaioordanidou et al. 2010b).

The superimposed evoked potentials during MVCs were elicited on the tibial nerve using stimulation intensities determined at rest. By doing so, activity-dependent changes in motor
Axonal excitability during MVCs may have led to unsuitable stimulation intensities. To overcome this issue, the maximal intensity to elicit Msup was increased by 20%. Indeed, it has been shown that the plateau of the maximal superimposed M-wave during MVC is obtained by stimulation of at least 120% of the maximal M-wave determined at rest (Racinais et al., 2013). Conversely, we did not increase the submaximal intensity to elicit superimposed H-waves during MVCs. By using intensity determined at rest, the superimposed H-waves obtained in the study were presumably not maximal but were rather on the ascending part of the recruitment curve (Racinais et al., 2013). Yet, it has been shown that the reliability of the superimposed H-reflex is higher when assessed in the ascending part of the recruitment curve (Grospretre & Martin, 2012).

LOA and superimposed evoked potentials are subjects to variability and were recorded only once during each neuromuscular tests session. However, no changes were found in the control condition for any recorded parameter, supporting that NMES rather than variability was likely responsible for LOA and superimposed evoked potentials changes.

5. Conclusion

In conclusion, the present study provides evidence that a cortical motor output decrease is involved in the loss of force after NMES at low frequencies. The decrease in central motor drive was demonstrated from the very first NMES sequence by the consistency between the kinetics of the electrophysiological and the fNIRS-measured hemodynamics data over the M1 area. The fact that the S1 activity also decreased after NMES indicates that S1 is not involved in the inhibition of the cortical motor output during this specific task.

Acknowledgements
The authors would like to thank Prof. Stephane PERREY for the use of NIRS equipment funded by a grant in aid from the Languedoc-Roussillon Region council (AVENIR).

Conflict of interest

No conflict of interest, financial or otherwise, is declared by the authors.
REFERENCES

Table 1. EMG activity, voluntary activation level, superimposed evoked potentials and mechanical responses.

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post 17</th>
<th>Post 34</th>
<th>Post 51</th>
<th>Post 68</th>
<th>Post 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOA (%)</td>
<td>93.33 (1.31)</td>
<td>87.96 (1.82)**</td>
<td>87.69 (1.97)***</td>
<td>86.27 (2.03)***</td>
<td>84.3 (2.81)***</td>
<td>83.5 (2.59)***</td>
</tr>
<tr>
<td>Pt (Nm)</td>
<td>21.53 (1.1)</td>
<td>21.38 (1.08)</td>
<td>20.23 (0.96)***</td>
<td>19.92 (0.95)***</td>
<td>19.44 (0.88)***</td>
<td>19.28 (0.81)***</td>
</tr>
<tr>
<td>Msup (mV)</td>
<td>10.9 (1)</td>
<td>9.13 (0.91)***</td>
<td>9.13 (0.91)***</td>
<td>8.63 (0.88)***</td>
<td>8.82 (0.9)***</td>
<td>8.27 (0.73)***</td>
</tr>
<tr>
<td>EMG_{RMS}/Msup</td>
<td>0.0224 (0.002)</td>
<td>0.0223 (0.002)</td>
<td>0.0198 (0.001)*</td>
<td>0.0204 (0.001)**</td>
<td>0.0198 (0.001)*</td>
<td>0.0203 (0.001)*</td>
</tr>
<tr>
<td>Hsup/Msup</td>
<td>0.398 (0.03)</td>
<td>0.455 (0.046)</td>
<td>0.414 (0.036)</td>
<td>0.396 (0.034)</td>
<td>0.355 (0.036)</td>
<td>0.413 (0.038)</td>
</tr>
<tr>
<td>V/Msup</td>
<td>0.321 (0.025)</td>
<td>0.237 (0.031)*</td>
<td>0.252 (0.027)*</td>
<td>0.218 (0.038)**</td>
<td>0.227 (0.031)**</td>
<td>0.220 (0.035)**</td>
</tr>
</tbody>
</table>

Values are mean (SE). * p < 0.05, ** p < 0.01 and *** p < 0.001 significantly different from pre values.
Fig. 1. Schematic representation of the experimental session. (A) Experimental design. (B) Decomposition of a sequence of neuromuscular tests performed after each sequence of trains. N.T: Neuromuscular Tests. Details on resting evoked potentials are given in *electrically evoked potentials* section.
Fig. 2. Schematic representations of the placement of the fNIRS optodes. The emitters (E) were placed at 3.5 cm from the receptor (R). The optodes were positioned according to the extended EEG 10-20 system: around C3 and CP3 (or C4 and CP4) to target the primary motor and somatosensory cortex, around CP1 (or CP2) to target the prefrontal cortex. Cz is situated at the middle of the distance between the nasion and the inion. CPz is situated at 10% of the distance between the nasion and the inion. The optodes were placed on the contralateral side.
Fig. 3. (A) Torque evoked by the NMES trains. (B) Torque produced during maximal voluntary contractions. ** $p < 0.01$ and *** $p < 0.001$ significantly different from pre values.
Fig. 4. (A) Primary motor cortex oxygenation. (B) Primary somatosensory cortex oxygenation. * $p < 0.05$, ** $p < 0.01$ and *** $p < 0.001$ significantly different from pre values. Vertical bars represent SE.
Fig. 5. Typical response of one subject for superimposed evoked potentials during maximal voluntary contractions (Msup, V-wave and Hsup), level of voluntary activation (twitch-like increment in torque) and cortical activity changes over the M1 area (HbO and HbR), before (pre) and after NMES (post85). Arrows indicate tibial nerve stimulation.