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SLEEP DISORDERED BREATHING
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Study Objectives: Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. 
The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) 
and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation.
Methods: One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60–80 
mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index < 15) had polysomnographic sleep recordings. In addition, twenty-nine 
patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor 
cortex activation and excitability and maximal voluntary quadriceps strength measurement.
Results: A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy 
(n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml−1 (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients 
(both P = 0.03), but muscle strength was comparable between groups (P = 0.58).
Conclusions: Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker 
and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a 
compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment.
Clinical Trial Registration: The study was registered at www.clinicaltrials.gov as NCT01679782.
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INTRODUCTION
Patients with chronic obstructive pulmonary disease (COPD) 
present several neurological disorders that directly affect daily 
life. These disorders include cognitive dysfunction, which 
degrades quality of life by, for example, decreasing driving 
ability.1 In our laboratory, we previously showed that motor 
cortex impairment could be involved in COPD muscle weak-
ness due to inadequate motor cortex activation.2

The origin of the cerebral dysfunction in patients with 
COPD remains unelucidated. The potential role of hypoxemia 
in triggering neuronal damage and dysfunction by cerebral ox-
ygen deprivation has often been hypothesized.3 However, sev-
eral studies have provided evidence of cerebral dysfunction in 
nonhypoxemic COPD patients, indicating that hypoxemia per 
se is not the main factor.4–6 This observation is unsurprising 
because an adequate oxygen supply to the brain is perma-
nently ensured through cerebrovascular oxygen (O2) reactivity. 
During hypoxemia or oxygen desaturation, cerebrovascular 
O2 reactivity prevents cerebral hypoxia by increasing cerebral 
blood flow (CBF) up to 200%.7,8 Consequently, the resting CBF 
is much higher in hypoxemic than in nonhypoxemic COPD 
patients and healthy controls.9,10 For the same reason, CBF in-
creases in COPD during exercise-induced desaturation.11 This 
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Significance
This study reveals that over half of COPD patients (grade 2 and 3) nonhypoxemic at rest have nocturnal desaturation during nonrapid eye movement 
sleep stages. These patients also present an increased cerebral lesion biomarker and a reduced motor cortex activation and excitability during 
quadriceps voluntary contractions. These results are consistent with the development of cerebral lesions in case of nonrapid eye movement sleep 
desaturation, and corroborate the hypothesis of an absence of cerebrovascular reactivity during these stages. The prevention of nonrapid eye movement 
sleep desaturation thus appears as a relevant clinical perspective to prevent COPD brain injury or even to restore brain function.

results in adequate cerebral oxygen delivery even in the case of 
hypoxemia.11 As a whole, these studies provide evidence that 
cerebrovascular O2 reactivity prevents brain hypoxia in COPD.

Unfortunately, cerebrovascular reactivity is impaired during 
nonrapid eye movement (NREM) sleep stages.12–15 Numerous 
studies have reported an unexpected absence of CBF modula-
tion during NREM sleep (but not during rapid eye movement 
[REM] sleep) in individuals who experience NREM sleep de-
saturation.12–15 Indeed, by decreasing arterial saturation of ox-
ygen (SaO2) artificially by 5% to 10%, Meadows et al.15 found 
a consistent CBF increase in wake states, whereas it tended to 
decrease during slow wave sleep in hypoxemia. Therefore, if 
the arterial oxygen content falls below the normal value during 
NREM sleep, it may not be compensated, potentially leading 
to neuronal injury.16

Nocturnal desaturation is frequent in nonhypoxemic COPD 
patients. The prevalence of COPD patients who are normoxic 
while awake and who spend at least 30% of the total sleep time 
(TST) with a saturation of peripheral oxygen (SpO2) below 
90% ranges from 38% to

70%.17–19 To the best of our knowledge, the prevalence of 
NREM sleep desaturation in COPD has never been specifi-
cally assessed. It is generally acknowledged that the deepest 
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desaturation occurs during REM sleep. However, because 
REM sleep represents only about 13% of the TST in COPD,20 
patients with COPD and nocturnal desaturation (for at least 
30% of TST) also necessarily experience desaturation for a sig-
nificant proportion of NREM sleep.

Central nervous system (CNS) injury in COPD was re-
cently evidenced by magnetic resonance imaging (MRI) and 
measurement of serum S100B levels.21,22 S100B is a calcium 
binding protein, mainly produced by astrocytes,23 that is re-
leased in the blood circulation in response to glia cell activa-
tion during acute and chronic conditions of brain damage.24 
An increase in serum S100B concentration has been described 
in a wide range of neurological disorders such as acute isch-
emic and traumatic brain injury and hypoxic brain damage.25–27 
Serum S100B is considered as a surrogate biomarker for neu-
ronal injury28 and has the main advantage of providing an easy-
to-use assessment of cerebral damage.29

The aim of the study was twofold: to determine the preva-
lence of patients with COPD who are nonhypoxemic but ex-
perience nocturnal desaturation during NREM sleep; and to 
compare CNS injury and neuromuscular function in patients 
experiencing desaturation and those who are not during NREM 
sleep and assess the repercussions of desaturation on neural 
drive during maximal voluntary muscle contraction. We hy-
pothesized higher levels of serum S100B associated with lower 
motor cortex activation and lower muscle strength in patients 
with COPD who experience desaturation during NREM sleep.

METHODS

Participants
The study was conducted between 2012 and 2014 at the Cli-
nique du Souffle La Vallonie in Lodeve, France, and the Cli-
nique du Souffle Les Clarines in Riom-es-Montagnes, France. 

Over this period, 1,213 patients taking part in a 4-w inpa-
tient pulmonary rehabilitation program underwent a routine 
medical examination in the first days following admission, 
composed of anthropometric evaluation, resting pulmonary 
function assessment, resting blood gas assessment, the 6-min 
walk test, and polysomnographic sleep (PSG) recordings. after 
completion, patient records were screened to identify those pa-
tients who met the following criteria: between 40 and 80 y old, 
diagnosis of COPD with postbronchodilator forced expiratory 
volume in 1 sec (FEV1) between 30% and 80% of predicted 
values (corresponding to grades 2 and 3 of the Global Initia-
tive for Chronic Obstructive Lung Disease [GOLD] classifica-
tion30), resting partial pressure of oxygen (PaO2) between 60 
and 80 mmHg, and an apnea-hypopnea index (AHI) lower 
than 15 events per hour. One hundred fifteen patients fulfilled 
these criteria and were thus selected for a study to determine 
the prevalence of NREM sleep desaturation in nonhypoxemic 
COPD patients (Figure 1).

In a second step, we compared the neuromuscular function 
between patients with COPD with and without NREM sleep 
desaturation. Over a 6-mo period, a total of 29 consecutive 
patients underwent additional blood sampling and neuromus-
cular assessment. Patients were not eligible for neuromuscular 
assessment if they were unable to give written consent or per-
form the experimental maneuvers, were on medication known 
to impair brain function, or had impaired visual function, a 
pacemaker, current or past alcohol abuse, an exacerbation in 
the past 4 w, or neurologic or neuromuscular disease. Proce-
dures were approved by the local Ethics Committee (Comité 
de protection des personnes Sud Est VI, number AU980) and 
complied with the principles of the Declaration of Helsinki for 
human experimentation. The study was registered at www.
clinicaltrials.gov as NCT01679782.

Design
All tests were completed within the first week after admis-
sion. All participants were first evaluated for anthropometric 
parameters, resting pulmonary function, resting blood gases, 
the 6-min walk test, and polysomnographic sleep (PSG) re-
cordings. The patients eligible for neuromuscular assessment 
were then probed and underwent medical examination after 
giving written consent. These patients were familiarized with 
the neuromuscular tests on the first day. Blood samples were 
collected the next day at patient wake-up, and between 06:30 
and 07:30. The neuromuscular tests took place in the morning. 
The design of the neuromuscular tests is detailed in the Pro-
tocol section.

Measurements

Pulmonary function test
Diagnosis and staging of COPD were based on spirometry 
(V6200 Autobox, Sensormedics Corp., Yorba Linda, CA, USA). 
Measurements included forced vital capacity (FVC) and FEV1. 
The presence of persistent airflow obstruction and thus COPD 
was defined by a postbronchodilator FEV1/FVC ratio < 70%. 
The FEV1 values were compared with the predicted values of 
Quanjer et al.31

Figure 1—Flow diagram of the trial. The patients were assessed for 
eligibility at the beginning of a 4-w inpatient pulmonary rehabilitation 
program. All tests were completed within the first week following 
admission.
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Blood gas analysis
Blood gases (PaO2 and partial arterial pressure of carbon dioxide 
[PaCO2]) collected from the radial artery were measured in the 
resting patients while they breathed room air, using a blood gas 
analyzer (ABL 825, Radiometer Medical, Bronshoj, Denmark).

Polysomnographic sleep recordings
PSG was performed using standard techniques and manually 
analyzed according to the latest guidelines of the American 
Academy of Sleep Medicine.32 Stage epoch classification and 
SpO2 were exported at 1 Hz in a text file. Then the percentage 
of SpO2 below 90% during NREM sleep was analyzed with an 
automatic routine developed in MATLAB (MATLAB 8.0, The 
MathWorks, Inc., Natick, MA, USA). Patients who spent more 
than 10% with SpO2 below 90% during NREM sleep were 
classified as NREM sleep desaturators (NREMDes), and non-
NREM sleep desaturators otherwise (NREMnoDes), according 
to published data giving evidence of cognitive dysfunction for 
similar levels of desaturation.33

Exercise-induced desaturation
Exercise-induced desaturation was assessed during a 6-min 
walk test,34 which was performed indoors along a 15-m cor-
ridor following the current international recommendations.35 
The SpO2 was monitored throughout the test with a digital 
pulse oximeter (Nonin Medical, Inc. Minneapolis, MN, USA).

S100B measurement
Blood serum was obtained by centrifuging the blood samples for 
10 min at 4,000 rpm and was kept frozen at −80°C until studied. 
Serum samples were analyzed for human S100B using commer-
cial enzyme-linked immunosorbent assay kits (EMD Millipore, 
Billerica, MA, USA). S100B concentrations are expressed in pg/
mL and the limit of detection was 2.74 pg/mL. More details on 
S100B measurement can be found in the supplemental material.

Torque and electromyography recordings
Maximal quadriceps torque was studied during isometric max-
imal voluntary contractions (MVCs) of the dominant leg with 

hip and knee angles set at 90° and using the same settings as 
previously described.2 The surface electromyography (EMG) 
signal of the vastus medialis was recorded using bipolar, silver 
chloride, surface electrodes. The surface EMG signal was am-
plified (×1000) and recorded at a sampling frequency of 4096 
Hz (Biopac MP100, Biopac Systems, Santa Barbara, CA, USA).

Neuromuscular excitability and activation
Peripheral nerve stimulation was used to measure peripheral 
voluntary activation (peripheral VA), muscle contractility 
(peak twitch), muscle excitability (M-wave), and spinal excit-
ability (H-wave). The femoral nerve of the dominant leg was 
stimulated with a constant-current, high-voltage stimulator 
(DS7AH, Digitimer, Hertforshire, UK). A recruitment curve 
was performed at rest to determine which intensities to use 
during the protocol to elicit maximal M-waves (Mmax) and 
H-waves (Hmax).

Transcranial magnetic stimulation was used to measure cor-
tical voluntary activation (cortical VA) and corticospinal excit-
ability. Single transcranial magnetic stimulation (TMS) pulses 
of 1-ms duration were delivered over the motor cortex using 
a Magstim 200 (Magstim Co., Whitland, UK). A recruitment 
curve was performed during voluntary contraction at 10% 
of the maximal quadriceps torque in order to determine the 
maximal intensity.36 The intensity at which the highest motor-
evoked potentials (MEP) was observed was then used during 
the protocol to assess cortical VA and corticospinal excitability.

More details on the peripheral nerve and transcranial mag-
netic stimulation procedures are provided in the supplemental 
material.

Protocol
The neuromuscular tests consisted of four MVCs of the knee 
extensors, each separated by 2 min of recovery (Figure 2). Par-
ticipants were asked to maintain maximal effort for at least 
4 sec. A double pulse at 100 Hz was delivered at the Mmax 
intensity over the femoral nerve during the force plateau of the 
first two MVCs (superimposed doublet) and 2 sec after relax-
ation (control doublet), according to the twitch interpolation 

Figure 2—Experimental design. Gray rectangles represent voluntary quadriceps contractions at maximal (MVC) or submaximal intensity at 50 and 30% 
of MVC. Superimposed and control doublets, maximal M-waves (Mmax), and maximal H-waves (Hmax) were delivered via electrical stimulation over the 
femoral nerve. Motor-evoked potentials (MEP) were delivered over the motor cortex via transcranial magnetic stimulation.
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technique.37 A single transcranial magnetic stimulation pulse 
was delivered over the motor cortex to elicit MEPs during the 
force plateau of the last two MVCs. Three single pulses at 
Mmax intensity or Hmax intensity separated by 10 sec were 
delivered twice between MVCs to elicit Mmax and Hmax at 
rest, respectively (see Figure 2 for more details). After the 
MVCs, three submaximal voluntary contractions (SVCs) with 
visual feedback were performed at 50% and 30% of MVC. A 
single transcranial magnetic stimulation pulse was delivered 
during the force plateau of each SVC to elicit superimposed 
twitch responses at 30% and 50% of MVC. Then the transcra-
nial magnetic stimulation resting twitch was determined by 
extrapolation of the linear regression between voluntary force 
and the superimposed twitch evoked at 30%, 50%, and during 
MVC.38

Data Analysis
Maximal quadriceps torque (QMVC) was selected as the highest 
torque plateau of 500 ms from the four MVCs. Muscle contrac-
tile properties were evaluated by the quadriceps peak twitch 
(QPt) from the highest twitch response induced by femoral 
nerve stimulation at rest.

Muscle excitability was determined as the highest Mmax 
peak-to-peak amplitude induced by femoral nerve stimulation 
at rest.

Spinal excitability was determined as the highest Hmax 
peak-to-peak amplitude normalized with respect to muscle ex-
citability (i.e., Hmax/Mmax).

The amount of neural drive to the muscle was quantified 
by the root mean square of the vastus medialis EMG signal 
(EMGRMS) during the highest torque plateau of 500 ms normal-
ized with respect to muscle excitability (i.e., EMGRMS/Mmax).

Peripheral VA was calculated via femoral nerve stimulation 
according to the twitch interpolation technique37 as follows:

Peripheral VA (%) = [1 − ((superimposed doublet) ⁄ (control doublet)) × 100]

Motor cortex activation (cortical VA) was calculated via 
transcranial magnetic stimulation. Because the relationship 
between superimposed transcranial magnetic stimulation 
twitch and voluntary force is not linear for intensities below 
25% of MVC (reduced cortical and spinal excitability at low 
force levels39), the transcranial magnetic stimulation resting 
twitch was estimated by extrapolation of the linear regression 
between voluntary force and the superimposed twitch evoked 
at 30% of MVC, 50% of MVC, and during MVC.38 The cortical 
VA was calculated as follows38:

Cortical VA (%) = [1 − ((superimposed twitch) ⁄ (estimated resting twitch)) × 100]

Corticospinal excitability was assessed by the amplitude of 
the maximal MEP induced by transcranial magnetic stimu-
lation during MVCs, normalized with respect to muscle ex-
citability (i.e., MEP/Mmax). The cortical silent period (CSP) 
duration was measured as the time between MEP onset and the 
return of voluntary EMG activity. The central motor conduc-
tion time (CMCT) was calculated from the delay between the 
stimulus artifact and MEP onset.

Statistical Analysis
All statistical analyses were performed using Statistica software 
(StatSoft, Inc., version 6.0, Tulsa, OK, USA). All data were ex-
amined for normality using a Shapiro-Wilk test. Differences 
between NREMDes and NREMnoDes patients were studied using 
unpaired t-tests for parametric data, and nonparametric Mann-
Whitney U tests otherwise. The required sample size for the sub-
study was calculated on the level of voluntary activation (main 
outcome), based on a between-groups difference of 20%.40 With 
a 5% significance level and a power of 90%, the required sample 
size was ten per group. Data are reported as mean and standard 
deviation (SD) or median and quartiles (lower and upper quar-
tiles labeled respectively by Q1 and Q3) in the case of nonpara-
metric statistics. The significance level was set at P ≤ 0.05.

RESULTS

Prevalence of NREM Sleep Desaturation
The main characteristics of the NREMnoDes and NREMDes pa-
tients are depicted in Table 1. The NREMDes group was com-
posed of 59 patients (51.3% of the study sample), meaning that 
over half of the patients with COPD spent more than 10% of 
NREM sleep time with SpO2 below 90%. Mean SpO2 during 
NREM sleep was 92.9 ± 1.51% in the NREMnoDes patients 
versus 88.9 ± 1.96% in the NREMDes patients (P < 0.001). 
There was no significant difference between the NREMDes and 
NREMnoDes patients regarding age (P = 0.78), weight (P = 0.98), 
body mass index (BMI; P = 0.71), FEV1 (P = 0.32), FEV1/FVC 
(P = 0.13), blood gases (P = 0.15 and P = 0.98 for PaO2 and 
PaCO2, respectively) or AHI (P = 0.81).

Subsample Characteristics and Blood Sample Analysis
The NREMDes and NREMnoDes patients who took part in the 
neuromuscular tests (n = 29) did not exhibit any significant dif-
ferences regarding age, weight, BMI, FEV1, FEV1/FVC, blood 
gases, or time to desaturate during exercise (Table 2). The total 
sleep time, arousal index, and AHI were also comparable be-
tween groups (P = 0.26, 0.97, and 0.92, respectively). Serum 
levels of S100B were significantly higher in the NREMDes com-
pared with NREMnoDes patients (P = 0.028). The values were 45.1 
[Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.mL−1 in 
the NREMDes and NREMnoDes patients, respectively (Figure 3).

Quadriceps Torque and Voluntary Activation
The data are presented in Figure 4. There were no significant 
differences on QMVC (P = 0.58) or QPt (P = 0.48) between the 
NREMDes and NREMnoDes patients. QMVC values were 101.1 ± 39 
and 110.9 ± 61 Nm, and QPt values were 41 ± 20 and 37 ± 16 Nm, 
for the NREMDes and NREMnoDes patients, respectively. Con-
versely, peripheral VA was significantly lower in the NREMDes 
patients (90.7 ± 7.6 versus 95.9 ± 3.3%, P = 0.022). The cortical 
VA was also decreased in the NREMDes group compared with 
NREMnoDes and was 89.5% [Q1: 85.8, Q3: 93.6] versus 94.1% 
[Q1: 93.6, Q3: 96.8), respectively (P = 0.03, Figure 4B).

Electrophysiological Data
The data are presented in Table 3. EMGRMS/Mmax and MEP/
Mmax were significantly lower in the NREMDes compared 
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with NREMnoDes patients (P = 0.031 and P = 0.03, respectively). 
Mmax amplitude (P = 0.08), Hmax/Mmax (P = 0.66), CSP 
(P = 0.28) and CMCT (P = 0.88) were not significantly dif-
ferent between groups.

DISCUSSION
The major findings of the study were that more than half of the 
nonhypoxemic COPD patients spent more than 10% of NREM 
sleep time with SpO2 below 90%, and the nonhypoxemic 

COPD patients who spent more than 10% of NREM sleep time 
in desaturation had reduced motor cortex activation and ex-
citability during maximal voluntary contractions and higher 
serum S100B concentrations.

Prevalence of NREM Sleep Desaturation
The prevalence of O2 desaturation during sleep is thought to be 
in the range of 38% to 70% in nonhypoxemic COPD patients, 
and our data are consistent with this range.17–19 In the current 

Table 1—Characteristics of the patients included in the study.

Total Sample NREMnoDes NREMDes P
n (% total sample) 115 (100%) 56 (48.7%) 59 (51.3%)
Sex M/F 61/54 29/27 32/27
Age, y 64.28 (9.2) 64.04 (9.3) 64.53 (9.1) 0.78
Weight, kg 79.5 (19.2) 79.5 (19) 79.5 (19.6) 0.98
BMI, kg.m−2 28.7 (6.31) 28.5 (6.03) 28.9 (6.6) 0.71
FEV1, L 1.48 (0.56) 1.53 (0.58) 1.43 (0.54) 0.32
FEV1, % of predicted values 55.7 (15.5) 56.9 (15.5) 54.6 (15.5) 0.44
FEV1/FVC % 54.1 (10.7) 55.7 (10.4) 52.6 (10.9) 0.13
PaO2, mmHg 68.7 (5.2) 69.4 (5.78) 68 (4.54) 0.15
PaCO2, mmHg 39.4 (5.56) 39.5 (5.8) 39.4 (4.5) 0.98
SaO2, % 92.9 (2.39) 93.3 (2.41) 92.5 (2.32) 0.07
AHI, events.h−1 6.58 (4.93) 6.43 (5.38) 6.73 (4.5) 0.81
% of NREM sleep time with SpO2 < 90% 29 (35.4) 0.89 [0, 2.1] 46.2 [25.3, 89.9] < 0.001

Values are means (standard deviation) or median [Q1, Q3 quartiles] in the case of nonparametric statistics. % of NREM sleep time with SpO2 < 90% is 
the percentage of time spent with pulse oxygen saturation below 90% during the NREM sleep stage. AHI, apnea-hypopnea index; BMI, body mass index, 
FEV1, forced expiratory volume in 1 sec, FVC, forced vital capacity, PaCO2, arterial carbon dioxide tension; PaO2, arterial oxygen tension; SaO2, arterial 
oxygen saturation. 

Table 2—Characteristics of the patients who took part in the neuromuscular tests.

NREMnoDes (n = 15) NREMDes (n = 14) P
Sex M/F 10/5 9/5
Age, y 61.5 (8.57) 61.7 (6.09) 0.93
Weight, kg 69.5 (18.3) 74.6 (19.3) 0.46
BMI, kg.m−2 25 (6.66) 25.9 (5.85) 0.69
FEV1, L 1.28 (0.54) 1.36 (0.57) 0.71
FEV1, % of predicted values 45.9 (15.5) 49.1 (16.8) 0.61
FEV1/FVC % 46.5 (11.5) 46.6 (11.5) 0.98
PaO2 mmHg 73.5 (6.33) 71.6 (10.5) 0.56
PaCO2 mmHg 38.9 (3.78) 41.1 (5.85) 0.35
SaO2% 94.4 (1.68) 93.7 (3.04) 0.44
% of 6 MWT time with SpO2 < 90% 41.1 (35.6) 59.5 (40.7) 0.20
Total sleep time, min 370.2 (92.4) 324.9 (86.8) 0.26
Arousal index, events.h−1 16.1 (9.64) 16.3 (11.66) 0.97
AHI, events.h−1 6.77 (7.91) 7.42 (6.81) 0.84
% of NREM sleep time with SpO2 < 90% 0.6 [0, 5] 50.45 [16.6, 69]  < 0.001

Values are means (standard deviation) or median [Q1, Q3 quartiles] in the case of nonparametric statistics. % of 6 MWT time with SpO2 < 90% is the 
percentage of time spent with pulse oxygen saturation below 90% during the 6 min walking test. % of NREM sleep time with SpO2 < 90% is the percentage 
of time spent with pulse oxygen saturation below 90% during the nonrapid eye movement (NREM) sleep stage. AHI, apnea-hypopnea index; BMI, body 
mass index; FEV1, force expiratory volume in 1 sec; FVC, forced vital capacity; PaCO2, arterial carbon dioxide tension; PaO2, arterial oxygen tension; 
SaO2, arterial oxygen saturation.
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study, we used a cutoff of only 10% of the NREM sleep time, 
with SpO2 below 90% to diagnose NREM sleep desaturation. As 
NREM sleep desaturation has never been specifically assessed in 
COPD, our choice was dictated by the criteria used to diagnose 
desaturation during TST. Although no clear consensus exists, a 
percentage of the TST with SpO2 below 90% is frequently cited 
in the literature.41 We opted for a 10% criterion with SpO2 below 
90% as it has classically been used to study brain impairment.33

This study is the first to assess the prevalence of NREM sleep 
desaturation in COPD. Although it is indisputable that the deepest 
O2 desaturation occurs during REM sleep,41 a few studies have 
observed NREM sleep desaturation in patients with COPD who 
experience nocturnal desaturation.42,43 Our results are consistent 
with these observations and provide further evidence that O2 de-
saturation during sleep is not restricted to REM sleep in COPD.

It should be noted that the mechanisms responsible for 
NREM desaturation cannot be determined from our results, 
although the phenomenon seems unlikely to be explained by 
obstructive sleep apnea (OSA). Indeed, patients with severe 
OSA were excluded, and the AHIs were comparable in the two 
groups of patients with and without NREM sleep desaturation. 
Furthermore, the mechanisms are unlikely to involve the levels 
of diurnal PaO2, given the absence of diurnal PaO2 differ-
ences between the groups. This result is unsurprising because 
PaO2 changes during sleep are not correlated with the diurnal 
PaO2 levels in COPD.44 Two important candidates to explain 
desaturation during sleep in COPD, especially during REM 
sleep, are alveolar hypoventilation and ventilation-perfusion 
mismatching.41 Their potential implication in NREM sleep de-
saturation remains to be investigated.

Effect of NREM Sleep Desaturation on Neuronal Damage and 
Neuromuscular Function
The second purpose of the study was to assess the repercus-
sions of NREM sleep desaturation on neuronal damage and 

neuromuscular function. To do so, serum S100B, an easy-to-
use and cost-effective biomarker of neuronal damage,25–28 was 
analyzed in a subgroup of patients with COPD. The ability of 
serum S100B to detect brain impairment was recently con-
firmed in COPD and found to be associated with hippocampal 
atrophy and impaired cognitive function.22 In the current study, 
we observed a higher S100B concentration in patients with 
NREM sleep desaturation, but without having the possibility to 
localize the impaired brain areas. The higher serum S100B con-
centrations could be linked to confounding factors other than 
NREM sleep desaturation, such as decreased sleep quality or 
sleep deprivation.45 Importantly, we did not find any differences 
between the patients who did and did not experience desatura-
tion during NREM sleep regarding TST and the arousal index.

Figure 4—(A) Maximal quadriceps torque (QMVC), quadriceps peak 
twitch (QPt) and peripheral voluntary activation (peripheral VA) in patients 
with COPD experiencing desaturation (NREMDes) and nondesaturation 
(NREMnoDes). (B) Medians and quartile box plots of motor cortex 
activation (cortical VA) in patients with COPD experiencing desaturation 
(NREMDes) and nondesaturation (NREMnoDes) (nonparametric data). 
NREM, nonrapid eye movement.

A

B

Figure 3—Median and quartiles box plots of serum S100B concentration 
in the patients with COPD experiencing desaturation (NREMDes) and 
nondesaturation (NREMnoDes) (non-parametric data). NREM = nonrapid 
eye movement.
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The functional repercussions of neuronal damage can be 
numerous. We chose to focus specifically on neuromuscular 
function and its effect on maximal quadriceps strength, as pe-
ripheral muscle weakness is one of the main deleterious sys-
temic effects in COPD.46 By stimulating the motor cortex, we 
observed lower MEP/M amplitude in the NREMDes patients 
during maximal voluntary contractions. The MEP/M ampli-
tude reflects both spinal and cortical excitability.47 In the cur-
rent study, the comparable H-reflex amplitude observed in 
the NREMDes and NREMnoDes patients indicates that the lower 
MEP/M could not be attributed to lower spinal excitability and 
thus is mainly explained by reduced motor cortex excitability. 
Furthermore, the reduced cortical excitability was associated 
with lower motor cortex activation as well as lower quadri-
ceps motor unit activation (as measured by peripheral VA and 
EMGRMS/M). These results support the hypothesis that patients 
with COPD who experience NREM sleep desaturation have 
reduced neural drive reaching the quadriceps muscle during 
MVC because of motor cortical output failure.

Impaired neural drive to the quadriceps has been a contro-
versial topic in COPD. One study reported lower activation at 
the muscle level in patients with COPD compared with healthy 
controls,40 whereas others did not.48,49 More recently, we found 
lower cortical activity through neuroimaging assessment in 
patients with COPD during MVCs.2 By using the neuroim-
aging technique, it was not possible to infer that the lower 
cortical activity resulted in lower cortical output.2 In the cur-
rent study, we assessed the cortical motor output with a more 
direct approach by stimulating the motor cortex. Our results 
confirm that cortical output is impaired in COPD but that it 
mainly concerns those patients with NREM sleep desaturation, 
as the values of voluntary activation reached by the NREMnoDes 
patients (around 95%) were substantially similar to those of 
healthy subjects reported in other studies.38,49 In addition, our 
data suggest that the discrepancies in previous studies might 
be explained by differences in the number of patients with 
COPD who experience NREM desaturation, which was not 
taken into account in previous works.

Maximal muscle torque depends in part on the ability to 
activate the muscle.50 In addition, as the relationship between 
peripheral VA and torque is curvilinear, small modulations 
in peripheral VA induce much larger QMVC changes at near-
maximal contraction intensities.51,52 For example, it was shown 
that a 5.7% increase in peripheral VA induced a 20.4% increase 

in QMVC.
52 Conversely, a 3% decrease in peripheral VA caused 

by neuromuscular fatigue has been associated with a 11% de-
crease in QMVC.

45 Therefore, the relatively low peripheral VA 
for NREMDes compared with NREMnoDes patients (average of 
5.2% less) should have expressed a greater loss of strength in 
these patients than the average of 9% (nonsignificant) strength 
reduction (101 versus 111 Nm, P = 0.58). The finding that 
the NREMDes patients reached the same torque level as the 
NREMnoDes patients could be explained by low statistical power, 
or it may suggest a compensatory mechanism(s). Concerning 
the first explanation, it is important to note that the SD of the 
QMVC data are in accordance with those of other studies.53 In 
addition, the current QMVC data are far from the level of sta-
tistical significance and we calculated the a posteriori number 
of subjects needed to obtain 90% statistical power (400 par-
ticipants). These observations are in accordance with a limited 
experimental effect, if proven. Any potential compensatory 
mechanism is unlikely to be linked to a difference in intrinsic 
muscle capacity (due to higher muscle mass or contractility) 
because QPt was comparable between groups. Muscle torque 
at a joint is the result of contributions from both agonist and 
antagonist muscles. In a condition of decreased agonist torque 
(due to lower cortical activation), any lower torque developed 
by the antagonist knee flexor muscles during maximal quadri-
ceps contraction in the NREMDes group could account for the 
comparable resultant torque; that is, comparable QMVC. Unfor-
tunately, the antagonist activity was not assessed in this study, 
but this hypothesis is supported by a study carried out by 
Simoneau et al.54 These authors reported no differences in the 
resultant maximal torque of the dorsiflexors in elderly subjects 
compared with young subjects, despite a 40% decrease in ago-
nist maximal torque. This was explained by an activation of the 
antagonist plantar flexor muscle during maximal dorsiflexion 
that was almost twofold lower in the elderly, showing that in 
some circumstances maximal voluntary torque can apparently 
be preserved despite a significant decrease in agonist torque.

Study Limitations
Serum S100B, which was used as a marker of CNS injury, has 
the advantage of being a strong, sensitive, and easy-to-use 
marker of neuronal damage.29 However, although S100B is a 
marker of cerebral damage, it does not inform the location of 
the damage and cannot be used to localize the impaired brain 
areas. Computed tomography and MRI are likely to provide 

Table 3—Electrophysiological responses to transcranial magnetic and femoral nerve stimulation.

NREMnoDes (n = 15) NREMDes (n = 14) P
Mmax amplitude mV 2.44 [1.64, 3.22] 4.32 [2.12, 7.9] 0.08
Hmax/Mmax 0.259 (0.208) 0.220 (0.153) 0.66
EMGRMS/Mmax 0.077 (0.040) 0.046 (0.029) 0.031
MEP/Mmax 0.529 (0.143) 0.285 (0.243) 0.03
CSP ms 110 (20.3) 101 (14.2) 0.28
CMCT ms 20.6 (3.8) 20.2 (5.71) 0.88

Values are means (standard deviation) or median [Q1, Q3 quartiles] in the case of non-parametric statistics. CMCT, central motor conduction time; 
CSP, corticospinal silent period; EMGRMS, root mean square of the vastus medialis electromyogram; MEP, motor-evoked potential; Mmax, maximal M-wave.
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useful complementary information on the cerebral damage 
in patients with COPD experiencing desaturation during 
NREM sleep.

We did not directly assess the cerebrovascular O2 reactivity 
during sleep. Therefore, although our results are highly con-
sistent with an effect of NREM sleep desaturation on brain 
impairment, the occurrence of brain hypoxia during NREM 
sleep in the patients experiencing desaturation could only be 
inferred from the literature data.12,13,55,56 A study to address 
the effect of correcting NREM sleep desaturation on serum 
S100B levels and motor cortex impairment would address 
this limitation.

CONCLUSION
NREM sleep desaturation is far from negligible as it concerns 
approximately one of two patients with moderate to severe 
COPD and a resting PaO2 between 60 and 80 mmHg. The pa-
tients with COPD who experience desaturation during NREM 
sleep exhibited an elevated level of a biomarker of CNS injury 
(i.e., serum S100B) and lower neural drive during quadriceps 
MVCs due to impaired cortical motor output. The observation 
that quadriceps muscle weakness was not more marked in the 
patients who experience desaturation suggests the existence 
of compensatory mechanisms whose nature and origin remain 
to be determined. Overall, the results are consistent with an 
involvement of NREM sleep desaturation in triggering CNS 
injury and decreasing neural drive to the quadriceps in COPD. 
The prevention of NREM sleep desaturation may well be an 
important clinical perspective to promote cerebral plasticity in 
COPD. Further studies are needed to determine the extent to 
which reversing neural activity is beneficial for the maximal 
voluntary force and functional capacity of patients with COPD.
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