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Multicontact dynamics of granular systems 
Farhang Radjai

LMGC, UMR CNRS, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

We present numerical results concerning force distributions and force-texture correlations in granular media. We show that 
two modes of stress transmission coexist in a granular assembly, and discuss the robustness of this behavior with respect to 
material parameters, boundary conditions, and simulation methods.

1. Introduction

Granular materials are composed of macroscopic
particles that interact only through contacts. Although
non cohesive granular materials exhibit fluid-like and
solid-like states, they behave in a very different way
from molecular solids and fluids. Recent active re-
search has uncovered interesting and often counter-
intuitive effects in the dynamics of granular media, and
has raised deep questions as to the relevance of famil-
iar concepts to this field [1].

The aim of this short contribution is to discuss the
origins and some important features of multicontact
states of granular systems, i.e. those states that involve
a network of contacts through which the momenta
propagate more efficiently than by the motion of
individual particles.

2. Multicontact states

Fundamentally, three microscopic features play a
key role in the dynamics of granular media: mutual ex-
clusion of particles, dissipative nature of interactions

due to plastic deformation during collisions or sliding
friction, and dynamically-induced randomness as the
only source of thermodynamic disorder that sets by it-
self the energy scale. As a consequence of these mi-
croscopic features, arguments based on entropy may
not work any more. An open dissipative system can
in principle self-organize and give rise to structures.
In fact, dense clusters appear even in strongly excited
granular systems [2]. This process may lead to the
collapse of particles into multicontact sub-structures,
where the interparticle contacts form a connected net-
work through which the momenta can propagate over
distances far larger than the particle size [3]. It is obvi-
ous that the evolution of such structures can not be de-
scribed in terms of a sequence of binary collisions and
thus thermodynamic description and any event-driven
algorithm for their simulation breaks down. Each col-
lision in the multicontact state is a multiple collision
due to the propagation of momenta in the contact net-
work.

The simplest example of a fully multicontact sys-
tem is a granular packing in quasi-static flow or sim-
ply in static equilibrium. In traditional fields, such as
soil mechanics, a longstanding effort has been spent in
order to rationalize the mechanical response of gran-
ular materials to shear for specified boundary con-
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ditions. Elasto-plastic models describe in many re-
spects the strain-stress behavior of granular materials
in quasi-static flow. This macroscopic approach deals
with granular medium as a continuum whose mechan-
ical behavior is described in terms of a stress tensor,
a strain-rate tensor and some internal variables. In the
60s, however, two important discoveries revived inter-
est in the microscopic aspects of granular materials:

(1) The contact network is generically anisotropic.
This means that the contact normals are not ran-
domly directed in space. In a properly sheared
packing, the density of contacts E(θ) with direc-
tion θ is usually well fitted by a truncated Fourier
expansion [4]:

E(θ) = c

π

{
1 + A cos 2(θ − θc)

}
, (1)

where c is the total number of contacts, the pa-
rameter A represents the amplitude of anisotropy,
and θc is the direction for which the maximum
of E is reached. Starting a system with an ini-
tially isotropic texture (A = 0), A increases with
the shear strain and θc coincides with the major
principal direction of the strain-rate tensor. Fig. 1
shows a polar diagram of E for a system of 4070
particles subject to simple shear. The velocity field
is displayed in Fig. 2.

(2) In contrast to the highly uniform density of a
close-packed assembly, the distribution of contact
forces is highly heterogeneous [5]. The forces can

Fig. 1. Polar diagram of the number of contacts E(θ) as a function
of their direction θ in the system of Fig. 2. The solid line is a fit
according to Eq. (1).

be as large as six times the average force in static
equilibrium and nearly 60% of contacts carry a
force below the average force [6]; see Fig. 3.

These observations hint at a physics very different
from that of dilute systems and, they also suggest that
the mechanical state of the system may be governed by
several internal variables associated with the texture
and the modes of force transmission inside the system.

Fig. 2. Velocity field during simple shearing of a system of 4070
particles.

Fig. 3. Normal forces in the system of Fig. 2. Line thickness is
proportional to the normal force.
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3. Numerical methods

For the investigation of multicontact states, we
performed extensive numerical simulations of systems
containing as large as 4000 circular particles. For these
simulations, we used two different methods: contact
dynamics (CD) and molecular dynamics (MD). The
CD method prescribes two contact laws [7,8]:
(1) Unilaterallity condition: If the separation velocity

vn of two particles is positive, then the normal
force N is zero. If, on the other hand, vn is zero,
i.e. the two particles stay in contact, then N can
have a positive indefinitely large value so as to
prevent interpenetration. This is shown as a graph,
Signorini’s graph, in Fig. 4(a).

(2) Coulomb’s friction law: If the sliding velocity vt
is nonzero, then the friction force T resists sliding
and its value is given by the coefficient of friction
μ times the normal force N . If, on the other
hand, vt is zero (non-sliding contact), then T can
take any value in the interval [−μN,μN]. This is
shown in Fig. 3(b) as a graph.

Both Signorini’s condition and Coulomb’s law are
nonsmooth in the sense that the two conjugate vari-
ables {vn,N} or {vt, T } belong to a continuous set of
acceptable values which can not be represented as a
mathematical function. It can be shown that dynamics
removes locally this degeneracy and allows to calcu-
late all forces and velocities with no resort to any reg-
ularization trick [7–9]. In the MD method, “regular-
ized” forms of the above laws are implemented [10].
In the simplest MD algorithms, the vertical branches
of the above graphs (vn = 0 and vt = 0) are replaced
by steep lines.

In this way, the main physical input in the two
methods is essentially the same. Both methods have

Fig. 4. (a) Signorini’s graph relating normal force N and separation
velocity vn at a contact between two particles; (b) Coulomb’s graph
relating friction force T and sliding velocity vt at a contact.

been applied with much success for the investigation
of granular phenomena. We note, however, that the
CD method does not imply a fine time resolution
and is thus faster than the MD method. Moreover, it
allows for a more precise handling of friction than in
the MD method. On the other hand, the CD method
does not prescribe the elasticity of contacts (particles
are infinitely stiff) and hence cannot be used for
the investigation of the phenomena, such as sound
propagation, that involve the deformation of particles.
The most significant results of our simulations can
be summarized around two main topics: statistical
distribution of forces and force-texture correlations.

4. Force distributions

Our simulations by MD and CD methods show
that the statistical distribution PN of normal forces is
generically a power law, with a negative exponent, for
the forces below the mean normal force 〈N〉, and a
decreasing exponential law for larger forces [6,11]:

PN(ξ) =
{

kξ−α ξ < 1,
keβ(1−ξ) ξ > 1,

(2)

where ξ = N/〈N〉 is the force normalized by the
mean force and k is the normalization factor. One
example is shown in Fig. 5. The distribution PT(T )

of tangential forces has the same form as Eq. (2)
with different exponents α′ and β ′. One might write
the distribution law of forces as an exponentially
decreasing function with a power-law prefactor, as

Fig. 5. Probability density PN of normal forces ξ normalized with
respect to the mean force.
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well. This alternative writing, however, does not fit
the transition part between the two behaviors better
than Eq. (2). The writing of the force distribution in
the form of Eq. (2), which completely separates the
two parts of the distribution, is motivated by the fact
that, as we shall see below, the contacts that carry a
force below the mean force, to which we will refer
as “weak contacts” in the following, do not play the
same role with respect to the overall resistance of
the system to shear as the contacts carrying a force
larger than the mean force (“strong contacts”). As the
average force 〈N〉 = ∫ ∞

0 NPN(N)dN is the point of
separation between the two parts of the distribution,
the exponents α and β are related by β2 = (1 −
α)(2−α). These exponents change only with the level
η of kinetic agitation and the average coordination
number. α increases from zero with η. In a quasi-
static flow, the distribution of weak forces is nearly
uniform, i.e. α � 0 and β � 1.4 (for tangential forces
α′ � 0.3 and β ′ � 1). Interestingly, our numerical
simulations show the same distribution (2) also in 3D
packings with exponents α � 0 and β � 1.4 at static
equilibrium. These exponents change very slightly
with the coefficient of friction. The size-dispersion
of particles does not seem to influence the force
distributions either. This distribution with almost the
same values of exponents has been recently confirmed
by careful experiments by means of the carbon paper
technique for forces of a granular packing at the
contacts with the walls of its container [12].

The distribution PN of normal forces in Eq. (2)
plays the same role with respect to the static pressure
of a granular system as the Maxwell–Boltzmann
distribution of particle velocities in a gas with respect
to the kinetic pressure. The two distributions have
the same exponential tail, but the important difference
between the two distributions is that in PN the weak
forces are at least as frequent as the average force.

5. Force-texture correlations

In the above statistical analysis of contact forces,
we considered all forces independently of directions of
the contacts through which they are transmitted. There
is, however, an interesting correlation between forces
and contact directions, which determine the anisotropy
of the texture. A simple way to study this correlation is

Fig. 6. Amplitude of anisotropy A of the ξ -network as a function of
the force cutoff ξ in the system of Fig. 2; see text for the definition
of the ξ -network.

to consider the subset of contacts which carry a force
below a given cutoff ξ . We shall refer to this subset
as the “ξ -network”. The variation of a quantity such
as the anisotropy evaluated for the “ξ -network” as ξ

is varied from 0 to the maximal force in the system,
allows then to estimate its correlation with the contact
force.

Fig. 6 shows the amplitude of anisotropy A as a
function of ξ in a simply sheared system at a given
moment of deformation. Surprisingly, the direction
of anisotropy is orthogonal to the major principal
direction of the strain-rate tensor (negative values) as
long as ξ is below the average force [13]. In other
words, the direction of the anisotropy of the weak
network is orthogonal to the axis of compression,
whereas that of the strong network is parallel.

It is also possible to evaluate the contribution of the
ξ -network to the overall stress inside the system. We
found that the shear stress Q for ξ < 1 is negligibly
small compared to the total deviation load sustained
by the system. Those forces only contribute 28%
of the average pressure in the medium. This means
that the weak network behaves essentially like an
interstitial liquid. The whole shear stress is sustained
by the strong network. We also found that the whole
dissipation due to sliding friction takes place inside the
weak network, while all contacts in the strong network
are non-sliding.

These properties, which are well reproduced both
by CD and MD simulations, indicate a bimodal trans-
mission of stress in multicontact systems. The texture
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is composed of two phases, a weak phase and a strong
phase, that are intimately correlated. This means that
for the description of stress transmission in a granular
medium, two stress tensors are needed.

6. Conclusion

We discussed features of the multicontact states of
granular systems at variance with the dilute states. Af-
ter a brief account of the major physical inputs in nu-
merical simulations of granular systems, we presented
two sets of numerical observations concerning the sta-
tistical distribution of contact forces and the force-
texture correlations. These observations suggest that
the texture of a granular material is composed of two
complementary phases and raise the problem of a the-
oretical understanding of the origins of this bimodal
behavior.
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