Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method

Abstract : This work analyzes a least-squares method in order to solve implicit time schemes associated to the 2D and 3D Navier-Stokes system, introduced in 1979 by Bristeau, Glowinksi, Periaux, Perrier and Pironneau. Implicit time schemes reduce the numerical resolution of the Navier-Stokes system to multiple resolutions of steady Navier-Stokes equations. We first construct a minimizing sequence (by a gradient type method) for the least-squares functional which converges strongly and quadratically toward a solution of a steady Navier-Stokes equation from any initial guess. The method turns out to be related to the globally convergent damped Newton approach applied to the Navier-Stokes operator, in contrast to standard Newton method used to solve the weak formulation of the Navier-Stokes system. Then, we apply iteratively the analysis on the fully implicit Euler scheme and show the convergence of the method uniformly with respect to the time discretization. Numerical experiments for 2D examples support our analysis.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.uca.fr/hal-01996429
Contributeur : Arnaud Munch <>
Soumis le : mardi 29 décembre 2020 - 11:26:38
Dernière modification le : lundi 22 février 2021 - 09:16:43

Fichier

Lemoine_Munch_NM_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01996429, version 4

Collections

Citation

Jérôme Lemoine, Arnaud Munch. Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method. Numerische Mathematik, Springer Verlag, In press. ⟨hal-01996429v4⟩

Partager

Métriques

Consultations de la notice

96

Téléchargements de fichiers

44