Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents - WP3: Radiobiologie, instrumentation et modèles pour une thérapie innovante
Article Dans Une Revue International Journal of Radiation Biology Année : 2024

Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents

Résumé

Résumé :Purposes: Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. Materials and methods: Leucocyte subpopulation count from tumor-free mice were obtained 12hours after 4 fractions of 2.5Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. Results: Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+- cells>T-CD4+-cells>B-cells>NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. Conclusions: Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.
Fichier principal
Vignette du fichier
2024_03_Pham_IJRB.pdf (5.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04504965 , version 1 (14-03-2024)

Identifiants

Citer

Thao-Nguyen Pham, Julie Coupey, Jérôme Toutain, Serge M Candéias, Gaël Simonin, et al.. Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents. International Journal of Radiation Biology, 2024, 100 (5), pp.744-755. ⟨10.1080/09553002.2024.2324471⟩. ⟨hal-04504965⟩
143 Consultations
26 Téléchargements

Altmetric

Partager

More