Holonomy braidings, biquandles and quantum invariants of links with $SL_2(\mathbb C)$ flat connections - LMBA-UBS
Article Dans Une Revue Selecta Mathematica (New Series) Année : 2020

Holonomy braidings, biquandles and quantum invariants of links with $SL_2(\mathbb C)$ flat connections

Résumé

R. Kashaev and N. Reshetikhin introduced the notion of holonomy braiding extending V. Turaev's homotopy braiding to describe the behavior of cyclic representations of the unrestricted quantum group $U_qsl_2$ at root of unity. In this paper, using quandles and biquandles we develop a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations. This theory applies to the unrestricted quantum group $U_qsl_2$ and produces an invariant of links with a gauge class of quandle representations.
Fichier principal
Vignette du fichier
1806.02787.pdf (820.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01954883 , version 1 (05-02-2024)

Identifiants

Citer

Christian Blanchet, Nathan Geer, Bertrand Patureau-Mirand, Nicolai Reshetikhin. Holonomy braidings, biquandles and quantum invariants of links with $SL_2(\mathbb C)$ flat connections. Selecta Mathematica (New Series), 2020, 26 (2), pp.19. ⟨10.1007/s00029-020-0545-0⟩. ⟨hal-01954883⟩
122 Consultations
30 Téléchargements

Altmetric

Partager

More