Automated bio-AFM generation of large mechanome data set and their analysis by machine learning to classify cancerous cell lines - Equipe diagnostic, supervision et COnduite
Journal Articles ACS Applied Materials & Interfaces Year : 2024

Automated bio-AFM generation of large mechanome data set and their analysis by machine learning to classify cancerous cell lines

Génération automatisée d'un grand ensemble de données mécanomiques bio-AFM et leur analyse par machine learning pour classer les lignées cellulaires cancéreuses

Abstract

Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of standardization. In this work, we have optimized AFM mechanical measurement on cell populations and developed a technology combining cell patterning and AFM automation that has the potential to record data on hundreds of cells (956 cells measured for publication). On each cell, 16 force curves (FCs) and seven features/FC, constituting the mechanome, were calculated. All of the FCs were then classified using machine learning tools with a statistical approach based on a fuzzy logic algorithm, trained to discriminate between nonmalignant and cancerous cells (training base, up to 120 cells/cell line). The proof of concept was first made on prostate nonmalignant (RWPE-1) and cancerous cell lines (PC3-GFP), then on nonmalignant (Hs 895.Sk) and cancerous (Hs 895.T) skin fibroblast cell lines, and demonstrated the ability of our method to classify correctly 73% of the cells (194 cells in the database/cell line) despite the very high degree of similarity of the whole set of measurements (79–100% similarity).
Embargoed file
Embargoed file
0 3 20
Year Month Jours
Avant la publication
Saturday, February 1, 2025
Embargoed file
Saturday, February 1, 2025
Please log in to request access to the document

Dates and versions

hal-04674006 , version 1 (20-08-2024)

Identifiers

Cite

Ophélie Thomas- -Chemin, Childérick Séverac, Abderazzak Moumen, Adrian Martinez Rivas, Christophe Vieu, et al.. Automated bio-AFM generation of large mechanome data set and their analysis by machine learning to classify cancerous cell lines. ACS Applied Materials & Interfaces, 2024, 16 (34), pp.44504-44517. ⟨10.1021/acsami.4c09218⟩. ⟨hal-04674006⟩
106 View
5 Download

Altmetric

Share

More