Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos - Laboratoire Charles Coulomb (L2C)
Pré-Publication, Document De Travail Année : 2024

Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos

Résumé

This study addresses the challenge of analyzing the growth kinetics of carbon nanotubes using in-situ homodyne polarization microscopy (HPM) by developing an automated deep learning (DL) approach. A Mask-RCNN architecture, enhanced with a ResNet-50 backbone, was employed to recognize and track individual nanotubes in microscopy videos, significantly improving the efficiency and reproducibility of kinetic data extraction. The method involves a series of video processing steps to enhance contrast and used differential treatment techniques to manage low signal and fast kinetics. The DL model demonstrates consistency with manual measurements and increased throughput, laying the foundation for statistical studies of nanotube growth. The approach can be adapted for other types of in-situ microscopy studies, emphasizing the importance of automation in high-throughput data acquisition for research on individual nano-objects.

Fichier principal
Vignette du fichier
HAL_Manuscript DL tracking CNTs microscopy videos_261024.pdf (685.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04755572 , version 1 (28-10-2024)

Identifiants

  • HAL Id : hal-04755572 , version 1

Citer

Vladimir Pimonov, Said Tahir, Vincent Jourdain. Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos. 2024. ⟨hal-04755572⟩
18 Consultations
18 Téléchargements

Partager

More