Skip to Main content Skip to Navigation
Journal articles

Spatially selective manipulation of cells with single-beam acoustical tweezers

Abstract : Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and have the potential to exert forces several orders of magnitude larger than their optical counterpart at equivalent power. Yet, these perspectives have so far been hindered by the absence of spatial selectivity of existing acoustical tweezers-i.e., the ability to select and move objects individually-and/or their limited resolution restricting their use to large particle manipulation only and/or finally the limited forces that they could apply. Here, we report precise selective manipulation and positioning of individual human cells in a standard microscopy environment with trapping forces up to~200 pN without altering their viability. These results are obtained with miniaturized acoustical tweezers combining holo-graphy with active materials to synthesize specific wavefields called focused acoustical vortices designed to produce stiff localized traps with reduced acoustic power.
Document type :
Journal articles
Complete list of metadatas
Contributor : Alexis Vlandas <>
Submitted on : Friday, November 13, 2020 - 10:33:59 AM
Last modification on : Wednesday, February 17, 2021 - 10:58:14 AM
Long-term archiving on: : Sunday, February 14, 2021 - 6:28:37 PM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License



Michaël Baudoin, Jean-Louis Thomas, Roudy Al Sahely, Jean Claude Gerbedoen, Zhixiong Gong, et al.. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-18000-y⟩. ⟨hal-03003284⟩



Record views


Files downloads