Caractérisation et modélisation de la variabilité au niveau du dispositif dans les MOSFET FD-SOI avancés

Abstract : The ``Moore's Law'' has defined the advancement of the semi-conductor industry for almost half a century. The device dimensions have reduced with each new technology node, and the design community and the market for the semiconductor have always followed this advancement of the industry and created applications which took better advantage of these new devices. But during the past decade, with the device dimensions approaching the fundamental limits imposed by the materials, the pace of this scaling down of device dimensions has decreased. While the technology struggled to keep alive the spirit of ``Moore's Law'' using innovative techniques like 3-D integration and new device architectures, the market also evolved to start making specific demands on the devices, like low power, low leakage devices demanded by Internet of Things (IoT) applications and high performance devices demanded by 5-G and data centre applications. So the semiconductor industry has slowly moved away from being driven by technology advancement, and rather it is now being driven by applications.Increasing power dissipation is an unavoidable outcome of the scaling process, while also targeting higher frequency applications. Historically, this issue has been handled by replacing the basic transistors (BJTs by MOSFETs), freezing the operation frequency in the system, lowering supply voltage, etc. The reduction of supply voltage is even more important for low power applications like in IoT, but this is limited by the device variability. Lowering the supply voltage implies reduced margin for the designers to handle the device variability. This calls for access to improved tools for the designers to predict the variability in the devices and evaluate its effect on the performance of their design and innovations in technology to reduce the variability in the devices. This thesis concentrates in the first part, and evaluates how the device variability can be accurately modelled and how its prediction can be included in the compact models used by the designers in their SPICE simulations.At first the thesis analyses the device variability in advanced FD-SOI transistors using direct measurements. In the spatial scale, depending on the distance between the two devices being considered, the variability can be classified into intra-die, inter-die, inter-wafer, inter-lot or even between different fabs. For the sake of simplicity all the variability within a single die can be grouped together as local variability, while others as global variability. Finally between two arbitrary device, there will be contributions from both local and global variability, in which case it is easier to term it as the total variability. Dedicated measurement strategies are developed using specialized test structures to directly evaluate the variability in different spatial scales using C-V and I-V characterisations. The effect of variability is first analysed on selected figure of merits (FOMs) and process parameters extracted from the C-V and I-V curves, for which parameter extraction methodologies are developed or existing methods are improved. This analysis helps identify the distribution of the parameters and the possible correlations present between the parameters.A very detailed analysis of the device variability in advanced FD-SOI transistors is undertaken in this thesis and a novel and unique characterisation and modelling methodology for the different types of variability is presented in great detail. The dominant sources of variability in the device behaviour, in terms of C-V and I-V and also in terms of parasitics (like gate leakage current) are identified and quantified. This work paves the way to a greater understanding of the device variability in FD-SOI transistors and can be easily adopted to improve the predictability of the commercial SPICE compact models for device variability.
Complete list of metadatas

Cited literature [276 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02380445
Contributor : Abes Star <>
Submitted on : Tuesday, November 26, 2019 - 11:39:20 AM
Last modification on : Wednesday, February 5, 2020 - 6:01:23 AM

File

PRADEEP_2019_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02380445, version 1

Collections

Citation

Krishna Pradeep. Caractérisation et modélisation de la variabilité au niveau du dispositif dans les MOSFET FD-SOI avancés. Micro et nanotechnologies/Microélectronique. Université Grenoble Alpes, 2019. Français. ⟨NNT : 2019GREAT020⟩. ⟨tel-02380445⟩

Share

Metrics

Record views

90

Files downloads

20