Exploration of the Ionic Conduction Properties of Porous MOF Materials - Institut Charles Gerhardt - Institut de Chimie Moléculaire et des Matériaux de Montpellier Accéder directement au contenu
Thèse Année : 2022

Exploration of the Ionic Conduction Properties of Porous MOF Materials

Etude des Propriétés de Conduction Ionique des Matériaux Hybrides Nanoporeux de type MOFs

Résumé

The conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production.
Ce travail a pour objectif l’étude de matériaux hybrides poreux de type Metal-Organic Frameworks (MOFs) et d’un cristal moléculaire en tant que conducteurs ioniques solides pour des applications dans le domaine de l’énergie et de l’environnement. Dans le premier cas, nous avons développé diverses stratégies pour optimiser et contrôler la teneur en sites acides de Lewis et en porteurs de charges de deux séries de MOFs afin de concevoir des matériaux aux propriétés de conduction protonique très prometteuses. A partir d’une approche basée sur la substitution progressive des ligands par des entités fonctionnalisées présentant des sources de protons acides, nous avons créé une série de MOFs, MIP-207-(SO3H-IPA)x-(BTC)1–x, dont la teneur en groupements sulfoniques, par l’intermédiaire du ligand SO3H-IPA, est contrôlée à façon. Le meilleur matériau qui combine stabilité structurale et conduction protonique élevée présente des performances sous humidité parmi les plus intéressantes au sein de la famille des MOFs conducteurs protoniques (e.g., σ = 2.6 × 10–2 S cm–1 à 363 K/95% d’humidité relative (RH)). Selon une autre approche, nous avons étudié un MOF mésoporeux connu (MIL-101(Cr)-SO3H) dont les parois des pores sont tapissées de sites protoniques et qui contient dans ses pores un liquide ionique, le chlorure chlorure de 1-Ethyl-3-methylimidazolium (EMIMCl) capable d’assurer le transfert de proton. L’encapsulation du liquide ionique, caractérisée par une série d’outils expérimentaux (sorption de diazote, DRX sur poudre, TGA/MS, DSC et analyse élémentaire), s’avère particulièrement efficace pour exalter les propriétés de conduction protonique des composites à la fois à l’état anhydre (σ473 K = 1.5 × 10-3 S cm-1) mais également à l’état hydraté (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1). Enfin, ce travail a été étendu à une autre famille de solides poreux, à travers l’étude des propriétés de conduction ionique d’un cristal moléculaire à base de zirconium (Zr-3) qui contient des paires ioniques KCl. Nous avons démontré que ZF-3 transite d’un comportement isolant à l’état anhydre (σ = 5.1 x 10-10 S cm-1 à 363 K/0% RH) vers un comportement super-conducteur ionique en présence d’eau (σ = 5.2 x 10-2 S cm-1 à 363 K/95 % RH), suite à l’augmentation de la dynamique de ions Cl- sous hydratation. Par ailleurs, des simulations moléculaires ont permis de décrire les mécanismes microscopiques à l’origine des propriétés de conduction des matériaux étudiés. Ces avancées devraient permettre de développer dans le futur de nouveaux matériaux performants dans le domaine de la conduction protonique et ionique.
Fichier principal
Vignette du fichier
TAKSANDE_2022_archivage.pdf (4.84 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03789646 , version 1 (27-09-2022)

Identifiants

  • HAL Id : tel-03789646 , version 1

Citer

Kiran Taksande. Exploration of the Ionic Conduction Properties of Porous MOF Materials. Material chemistry. Université de Montpellier, 2022. English. ⟨NNT : 2022UMONS010⟩. ⟨tel-03789646⟩
188 Consultations
113 Téléchargements

Partager

Gmail Facebook X LinkedIn More